Spaces:
Running
on
Zero
Running
on
Zero
zhiweili
commited on
Commit
•
37a1718
1
Parent(s):
c4a2b6e
add canny
Browse files- app_haircolor_inpaint_15.py +10 -5
app_haircolor_inpaint_15.py
CHANGED
@@ -53,6 +53,10 @@ controlnet = [
|
|
53 |
"lllyasviel/control_v11p_sd15_softedge",
|
54 |
torch_dtype=torch.float16,
|
55 |
),
|
|
|
|
|
|
|
|
|
56 |
]
|
57 |
|
58 |
basepipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
@@ -79,15 +83,16 @@ def image_to_image(
|
|
79 |
generate_size: int,
|
80 |
cond_scale1: float = 1.2,
|
81 |
cond_scale2: float = 1.2,
|
|
|
82 |
):
|
83 |
run_task_time = 0
|
84 |
time_cost_str = ''
|
85 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
86 |
-
|
87 |
-
lineart_image = lineart_detector(input_image, int(generate_size*
|
88 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
89 |
-
pidiNet_image = pidiNet_detector(input_image, int(generate_size*
|
90 |
-
control_image = [lineart_image, pidiNet_image]
|
91 |
|
92 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
93 |
generated_image = basepipeline(
|
@@ -101,7 +106,7 @@ def image_to_image(
|
|
101 |
width=generate_size,
|
102 |
guidance_scale=guidance_scale,
|
103 |
num_inference_steps=num_steps,
|
104 |
-
controlnet_conditioning_scale=[cond_scale1, cond_scale2]
|
105 |
).images[0]
|
106 |
|
107 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
|
|
53 |
"lllyasviel/control_v11p_sd15_softedge",
|
54 |
torch_dtype=torch.float16,
|
55 |
),
|
56 |
+
ControlNetModel.from_pretrained(
|
57 |
+
"lllyasviel/control_v11p_sd15_canny",
|
58 |
+
torch_dtype=torch.float16,
|
59 |
+
),
|
60 |
]
|
61 |
|
62 |
basepipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
|
|
|
83 |
generate_size: int,
|
84 |
cond_scale1: float = 1.2,
|
85 |
cond_scale2: float = 1.2,
|
86 |
+
cond_scale3: float = 1.2,
|
87 |
):
|
88 |
run_task_time = 0
|
89 |
time_cost_str = ''
|
90 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
91 |
+
canny_image = canny_detector(input_image, int(generate_size*1), generate_size)
|
92 |
+
lineart_image = lineart_detector(input_image, int(generate_size*1), generate_size)
|
93 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|
94 |
+
pidiNet_image = pidiNet_detector(input_image, int(generate_size*1), generate_size)
|
95 |
+
control_image = [lineart_image, pidiNet_image, canny_image]
|
96 |
|
97 |
generator = torch.Generator(device=DEVICE).manual_seed(seed)
|
98 |
generated_image = basepipeline(
|
|
|
106 |
width=generate_size,
|
107 |
guidance_scale=guidance_scale,
|
108 |
num_inference_steps=num_steps,
|
109 |
+
controlnet_conditioning_scale=[cond_scale1, cond_scale2, cond_scale3],
|
110 |
).images[0]
|
111 |
|
112 |
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
|