image2image / pipelines /masked_stable_diffusion_xl_img2img.py
zhiweili
test mask with Juggernaut-XL-v9
d8653bf
raw
history blame
31.9 kB
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import numpy as np
import torch
from PIL import Image, ImageFilter
from diffusers.image_processor import PipelineImageInput
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img import (
StableDiffusionXLImg2ImgPipeline,
rescale_noise_cfg,
retrieve_latents,
retrieve_timesteps,
)
from diffusers.utils import (
deprecate,
is_torch_xla_available,
logging,
)
from diffusers.utils.torch_utils import randn_tensor
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
class MaskedStableDiffusionXLImg2ImgPipeline(StableDiffusionXLImg2ImgPipeline):
debug_save = 0
@torch.no_grad()
def __call__(
self,
prompt: Union[str, List[str]] = None,
prompt_2: Optional[Union[str, List[str]]] = None,
image: PipelineImageInput = None,
original_image: PipelineImageInput = None,
strength: float = 0.3,
num_inference_steps: Optional[int] = 50,
timesteps: List[int] = None,
denoising_start: Optional[float] = None,
denoising_end: Optional[float] = None,
guidance_scale: Optional[float] = 5.0,
negative_prompt: Optional[Union[str, List[str]]] = None,
negative_prompt_2: Optional[Union[str, List[str]]] = None,
num_images_per_prompt: Optional[int] = 1,
eta: Optional[float] = 0.0,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.FloatTensor] = None,
prompt_embeds: Optional[torch.FloatTensor] = None,
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
ip_adapter_image: Optional[PipelineImageInput] = None,
ip_adapter_image_embeds: Optional[List[torch.FloatTensor]] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
guidance_rescale: float = 0.0,
original_size: Tuple[int, int] = None,
crops_coords_top_left: Tuple[int, int] = (0, 0),
target_size: Tuple[int, int] = None,
negative_original_size: Optional[Tuple[int, int]] = None,
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
negative_target_size: Optional[Tuple[int, int]] = None,
aesthetic_score: float = 6.0,
negative_aesthetic_score: float = 2.5,
clip_skip: Optional[int] = None,
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
mask: Union[
torch.FloatTensor,
Image.Image,
np.ndarray,
List[torch.FloatTensor],
List[Image.Image],
List[np.ndarray],
] = None,
blur=24,
blur_compose=4,
sample_mode="sample",
**kwargs,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.
image (`PipelineImageInput`):
`Image` or tensor representing an image batch to be used as the starting point. This image might have mask painted on it.
original_image (`PipelineImageInput`, *optional*):
`Image` or tensor representing an image batch to be used for blending with the result.
strength (`float`, *optional*, defaults to 0.8):
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
essentially ignores `image`.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference. This parameter is modulated by `strength`.
guidance_scale (`float`, *optional*, defaults to 7.5):
A higher guidance scale value encourages the model to generate images closely linked to the text
,`prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide what to not include in image generation. If not defined, you need to
pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).
num_images_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
eta (`float`, *optional*, defaults to 0.0):
Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies
to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If
not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
plain tuple.
callback (`Callable`, *optional*):
A function that calls every `callback_steps` steps during inference. The function is called with the
following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
callback_steps (`int`, *optional*, defaults to 1):
The frequency at which the `callback` function is called. If not specified, the callback is called at
every step.
cross_attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in
[`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
blur (`int`, *optional*):
blur to apply to mask
blur_compose (`int`, *optional*):
blur to apply for composition of original a
mask (`torch.FloatTensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.FloatTensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`, *optional*):
A mask with non-zero elements for the area to be inpainted. If not specified, no mask is applied.
sample_mode (`str`, *optional*):
control latents initialisation for the inpaint area, can be one of sample, argmax, random
Examples:
Returns:
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,
otherwise a `tuple` is returned where the first element is a list with the generated images and the
second element is a list of `bool`s indicating whether the corresponding generated image contains
"not-safe-for-work" (nsfw) content.
"""
# code adapted from parent class StableDiffusionXLImg2ImgPipeline
callback = kwargs.pop("callback", None)
callback_steps = kwargs.pop("callback_steps", None)
if callback is not None:
deprecate(
"callback",
"1.0.0",
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
if callback_steps is not None:
deprecate(
"callback_steps",
"1.0.0",
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
)
# 0. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
prompt_2,
strength,
num_inference_steps,
callback_steps,
negative_prompt,
negative_prompt_2,
prompt_embeds,
negative_prompt_embeds,
ip_adapter_image,
ip_adapter_image_embeds,
callback_on_step_end_tensor_inputs,
)
self._guidance_scale = guidance_scale
self._guidance_rescale = guidance_rescale
self._clip_skip = clip_skip
self._cross_attention_kwargs = cross_attention_kwargs
self._denoising_end = denoising_end
self._denoising_start = denoising_start
self._interrupt = False
# 1. Define call parameters
# mask is computed from difference between image and original_image
if image is not None:
neq = np.any(np.array(original_image) != np.array(image), axis=-1)
mask = neq.astype(np.uint8) * 255
else:
assert mask is not None
if not isinstance(mask, Image.Image):
pil_mask = Image.fromarray(mask)
else:
pil_mask = mask
if pil_mask.mode != "L":
pil_mask = pil_mask.convert("L")
# mask_blur = self.blur_mask(pil_mask, blur)
# mask_compose = self.blur_mask(pil_mask, blur_compose)
mask_compose = self.blur_mask(pil_mask, blur)
if original_image is None:
original_image = image
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
device = self._execution_device
# 2. Encode input prompt
text_encoder_lora_scale = (
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
)
(
prompt_embeds,
negative_prompt_embeds,
pooled_prompt_embeds,
negative_pooled_prompt_embeds,
) = self.encode_prompt(
prompt=prompt,
prompt_2=prompt_2,
device=device,
num_images_per_prompt=num_images_per_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
negative_prompt=negative_prompt,
negative_prompt_2=negative_prompt_2,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
lora_scale=text_encoder_lora_scale,
clip_skip=self.clip_skip,
)
# 3. Preprocess image
input_image = image if image is not None else original_image
image = self.image_processor.preprocess(input_image)
original_image = self.image_processor.preprocess(original_image)
# 4. set timesteps
def denoising_value_valid(dnv):
return isinstance(dnv, float) and 0 < dnv < 1
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
timesteps, num_inference_steps = self.get_timesteps(
num_inference_steps,
strength,
device,
denoising_start=self.denoising_start if denoising_value_valid(self.denoising_start) else None,
)
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
add_noise = True if self.denoising_start is None else False
# 5. Prepare latent variables
# It is sampled from the latent distribution of the VAE
# that's what we repaint
latents = self.prepare_latents(
image,
latent_timestep,
batch_size,
num_images_per_prompt,
prompt_embeds.dtype,
device,
generator,
add_noise,
sample_mode=sample_mode,
)
# mean of the latent distribution
# it is multiplied by self.vae.config.scaling_factor
non_paint_latents = self.prepare_latents(
original_image,
latent_timestep,
batch_size,
num_images_per_prompt,
prompt_embeds.dtype,
device,
generator,
add_noise=False,
sample_mode="argmax",
)
if self.debug_save:
init_img_from_latents = self.latents_to_img(non_paint_latents)
init_img_from_latents[0].save("non_paint_latents.png")
# 6. create latent mask
latent_mask = self._make_latent_mask(latents, mask)
# 7. Prepare extra step kwargs.
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
height, width = latents.shape[-2:]
height = height * self.vae_scale_factor
width = width * self.vae_scale_factor
original_size = original_size or (height, width)
target_size = target_size or (height, width)
# 8. Prepare added time ids & embeddings
if negative_original_size is None:
negative_original_size = original_size
if negative_target_size is None:
negative_target_size = target_size
add_text_embeds = pooled_prompt_embeds
if self.text_encoder_2 is None:
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
else:
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
add_time_ids, add_neg_time_ids = self._get_add_time_ids(
original_size,
crops_coords_top_left,
target_size,
aesthetic_score,
negative_aesthetic_score,
negative_original_size,
negative_crops_coords_top_left,
negative_target_size,
dtype=prompt_embeds.dtype,
text_encoder_projection_dim=text_encoder_projection_dim,
)
add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1)
if self.do_classifier_free_guidance:
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1)
add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0)
prompt_embeds = prompt_embeds.to(device)
add_text_embeds = add_text_embeds.to(device)
add_time_ids = add_time_ids.to(device)
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
image_embeds = self.prepare_ip_adapter_image_embeds(
ip_adapter_image,
ip_adapter_image_embeds,
device,
batch_size * num_images_per_prompt,
self.do_classifier_free_guidance,
)
# 10. Denoising loop
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
# 10.1 Apply denoising_end
if (
self.denoising_end is not None
and self.denoising_start is not None
and denoising_value_valid(self.denoising_end)
and denoising_value_valid(self.denoising_start)
and self.denoising_start >= self.denoising_end
):
raise ValueError(
f"`denoising_start`: {self.denoising_start} cannot be larger than or equal to `denoising_end`: "
+ f" {self.denoising_end} when using type float."
)
elif self.denoising_end is not None and denoising_value_valid(self.denoising_end):
discrete_timestep_cutoff = int(
round(
self.scheduler.config.num_train_timesteps
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
)
)
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
timesteps = timesteps[:num_inference_steps]
# 10.2 Optionally get Guidance Scale Embedding
timestep_cond = None
if self.unet.config.time_cond_proj_dim is not None:
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
timestep_cond = self.get_guidance_scale_embedding(
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
).to(device=device, dtype=latents.dtype)
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
shape = non_paint_latents.shape
noise = randn_tensor(shape, generator=generator, device=device, dtype=latents.dtype)
# noisy latent code of input image at current step
orig_latents_t = non_paint_latents
orig_latents_t = self.scheduler.add_noise(non_paint_latents, noise, t.unsqueeze(0))
# orig_latents_t (1 - latent_mask) + latents * latent_mask
latents = torch.lerp(orig_latents_t, latents, latent_mask)
if self.debug_save:
img1 = self.latents_to_img(latents)
t_str = str(t.int().item())
for i in range(3 - len(t_str)):
t_str = "0" + t_str
img1[0].save(f"step{t_str}.png")
# expand the latents if we are doing classifier free guidance
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
# predict the noise residual
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
added_cond_kwargs["image_embeds"] = image_embeds
noise_pred = self.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
timestep_cond=timestep_cond,
cross_attention_kwargs=self.cross_attention_kwargs,
added_cond_kwargs=added_cond_kwargs,
return_dict=False,
)[0]
# perform guidance
if self.do_classifier_free_guidance:
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
if latents.dtype != latents_dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
latents = latents.to(latents_dtype)
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
negative_pooled_prompt_embeds = callback_outputs.pop(
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
)
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
add_neg_time_ids = callback_outputs.pop("add_neg_time_ids", add_neg_time_ids)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if callback is not None and i % callback_steps == 0:
step_idx = i // getattr(self.scheduler, "order", 1)
callback(step_idx, t, latents)
if XLA_AVAILABLE:
xm.mark_step()
if not output_type == "latent":
# make sure the VAE is in float32 mode, as it overflows in float16
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
if needs_upcasting:
self.upcast_vae()
elif latents.dtype != self.vae.dtype:
if torch.backends.mps.is_available():
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
self.vae = self.vae.to(latents.dtype)
if self.debug_save:
image_gen = self.latents_to_img(latents)
image_gen[0].save("from_latent.png")
if latent_mask is not None:
# interpolate with latent mask
latents = torch.lerp(non_paint_latents, latents, latent_mask)
latents = self.denormalize(latents)
image = self.vae.decode(latents, return_dict=False)[0]
m = mask_compose.permute(2, 0, 1).unsqueeze(0).to(image)
img_compose = m * image + (1 - m) * original_image.to(image)
image = img_compose
# cast back to fp16 if needed
if needs_upcasting:
self.vae.to(dtype=torch.float16)
else:
image = latents
# apply watermark if available
if self.watermark is not None:
image = self.watermark.apply_watermark(image)
image = self.image_processor.postprocess(image, output_type=output_type)
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (image,)
return StableDiffusionXLPipelineOutput(images=image)
def _make_latent_mask(self, latents, mask):
if mask is not None:
latent_mask = []
if not isinstance(mask, list):
tmp_mask = [mask]
else:
tmp_mask = mask
_, l_channels, l_height, l_width = latents.shape
for m in tmp_mask:
if not isinstance(m, Image.Image):
if len(m.shape) == 2:
m = m[..., np.newaxis]
if m.max() > 1:
m = m / 255.0
m = self.image_processor.numpy_to_pil(m)[0]
if m.mode != "L":
m = m.convert("L")
resized = self.image_processor.resize(m, l_height, l_width)
if self.debug_save:
resized.save("latent_mask.png")
latent_mask.append(np.repeat(np.array(resized)[np.newaxis, :, :], l_channels, axis=0))
latent_mask = torch.as_tensor(np.stack(latent_mask)).to(latents)
latent_mask = latent_mask / max(latent_mask.max(), 1)
return latent_mask
def prepare_latents(
self,
image,
timestep,
batch_size,
num_images_per_prompt,
dtype,
device,
generator=None,
add_noise=True,
sample_mode: str = "sample",
):
if not isinstance(image, (torch.Tensor, Image.Image, list)):
raise ValueError(
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
)
# Offload text encoder if `enable_model_cpu_offload` was enabled
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
self.text_encoder_2.to("cpu")
torch.cuda.empty_cache()
image = image.to(device=device, dtype=dtype)
batch_size = batch_size * num_images_per_prompt
if image.shape[1] == 4:
init_latents = image
elif sample_mode == "random":
height, width = image.shape[-2:]
num_channels_latents = self.unet.config.in_channels
latents = self.random_latents(
batch_size,
num_channels_latents,
height,
width,
dtype,
device,
generator,
)
return self.vae.config.scaling_factor * latents
else:
# make sure the VAE is in float32 mode, as it overflows in float16
if self.vae.config.force_upcast:
image = image.float()
self.vae.to(dtype=torch.float32)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
elif isinstance(generator, list):
init_latents = [
retrieve_latents(
self.vae.encode(image[i : i + 1]), generator=generator[i], sample_mode=sample_mode
)
for i in range(batch_size)
]
init_latents = torch.cat(init_latents, dim=0)
else:
init_latents = retrieve_latents(self.vae.encode(image), generator=generator, sample_mode=sample_mode)
if self.vae.config.force_upcast:
self.vae.to(dtype)
init_latents = init_latents.to(dtype)
init_latents = self.vae.config.scaling_factor * init_latents
if batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] == 0:
# expand init_latents for batch_size
additional_image_per_prompt = batch_size // init_latents.shape[0]
init_latents = torch.cat([init_latents] * additional_image_per_prompt, dim=0)
elif batch_size > init_latents.shape[0] and batch_size % init_latents.shape[0] != 0:
raise ValueError(
f"Cannot duplicate `image` of batch size {init_latents.shape[0]} to {batch_size} text prompts."
)
else:
init_latents = torch.cat([init_latents], dim=0)
if add_noise:
shape = init_latents.shape
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
# get latents
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
latents = init_latents
return latents
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
def random_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
if latents is None:
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
else:
latents = latents.to(device)
# scale the initial noise by the standard deviation required by the scheduler
latents = latents * self.scheduler.init_noise_sigma
return latents
def denormalize(self, latents):
# unscale/denormalize the latents
# denormalize with the mean and std if available and not None
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
if has_latents_mean and has_latents_std:
latents_mean = (
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
)
latents_std = torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
else:
latents = latents / self.vae.config.scaling_factor
return latents
def latents_to_img(self, latents):
l1 = self.denormalize(latents)
img1 = self.vae.decode(l1, return_dict=False)[0]
img1 = self.image_processor.postprocess(img1, output_type="pil", do_denormalize=[True])
return img1
def blur_mask(self, pil_mask, blur):
mask_blur = pil_mask.filter(ImageFilter.GaussianBlur(radius=blur))
mask_blur = np.array(mask_blur)
return torch.from_numpy(np.tile(mask_blur / mask_blur.max(), (3, 1, 1)).transpose(1, 2, 0))