image2image / app_haircolor_inpaint_15.py
zhiweili
change linet detect
991954d
raw
history blame
7.41 kB
import spaces
import gradio as gr
import time
import torch
import numpy as np
from PIL import Image
from segment_utils import(
segment_image_withmask,
restore_result,
)
from diffusers import (
StableDiffusionControlNetInpaintPipeline,
ControlNetModel,
DDIMScheduler,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
)
from controlnet_aux import (
CannyDetector,
LineartDetector,
PidiNetDetector,
HEDdetector,
)
# BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-v1-5"
BASE_MODEL = "stable-diffusion-v1-5/stable-diffusion-inpainting"
# BASE_MODEL = "SG161222/Realistic_Vision_V2.0"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DEFAULT_EDIT_PROMPT = "RAW photo, Fujifilm XT3, sharp hair, high resolution hair, hair tones, natural hair, magazine hair, white color hair"
DEFAULT_NEGATIVE_PROMPT = "worst quality, normal quality, low quality, low res, blurry, text, watermark, logo, banner, extra digits, cropped, jpeg artifacts, signature, username, error, sketch ,duplicate, ugly, monochrome, horror, geometry, mutation, disgusting, poorly drawn face, bad face, fused face, ugly face, worst face, asymmetrical, unrealistic skin texture, bad proportions, out of frame, poorly drawn hands, cloned face, double face"
DEFAULT_CATEGORY = "hair"
canny_detector = CannyDetector()
lineart_detector = LineartDetector.from_pretrained("lllyasviel/Annotators")
lineart_detector = lineart_detector.to(DEVICE)
pidiNet_detector = PidiNetDetector.from_pretrained('lllyasviel/Annotators')
pidiNet_detector = pidiNet_detector.to(DEVICE)
hed_detector = HEDdetector.from_pretrained('lllyasviel/Annotators')
hed_detector = hed_detector.to(DEVICE)
controlnet = [
ControlNetModel.from_pretrained(
"lllyasviel/control_v11p_sd15_lineart",
torch_dtype=torch.float16,
),
ControlNetModel.from_pretrained(
"lllyasviel/control_v11p_sd15_softedge",
torch_dtype=torch.float16,
),
]
basepipeline = StableDiffusionControlNetInpaintPipeline.from_pretrained(
BASE_MODEL,
torch_dtype=torch.float16,
# use_safetensors=True,
controlnet=controlnet,
)
# basepipeline.scheduler = DDIMScheduler.from_config(basepipeline.scheduler.config)
basepipeline.scheduler = EulerAncestralDiscreteScheduler.from_config(basepipeline.scheduler.config)
basepipeline = basepipeline.to(DEVICE)
basepipeline.enable_model_cpu_offload()
@spaces.GPU(duration=30)
def image_to_image(
input_image: Image,
mask_image: Image,
edit_prompt: str,
seed: int,
num_steps: int,
guidance_scale: float,
strength: float,
generate_size: int,
cond_scale1: float = 1.0,
cond_scale2: float = 0.6,
):
run_task_time = 0
time_cost_str = ''
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
# canny_image = canny_detector(input_image, int(generate_size*1), generate_size)
lineart_image = lineart_detector(input_image, 384, generate_size)
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
pidiNet_image = pidiNet_detector(input_image, 512, generate_size)
control_image = [lineart_image, pidiNet_image]
generator = torch.Generator(device=DEVICE).manual_seed(seed)
generated_image = basepipeline(
generator=generator,
prompt=edit_prompt,
negative_prompt=DEFAULT_NEGATIVE_PROMPT,
image=input_image,
mask_image=mask_image,
control_image=control_image,
height=generate_size,
width=generate_size,
guidance_scale=guidance_scale,
strength=strength,
num_inference_steps=num_steps,
controlnet_conditioning_scale=[cond_scale1, cond_scale2],
).images[0]
run_task_time, time_cost_str = get_time_cost(run_task_time, time_cost_str)
return generated_image, time_cost_str
def make_inpaint_condition(image, image_mask):
image = np.array(image.convert("RGB")).astype(np.float32) / 255.0
image_mask = np.array(image_mask.convert("L")).astype(np.float32) / 255.0
assert image.shape[0:1] == image_mask.shape[0:1], "image and image_mask must have the same image size"
image[image_mask > 0.5] = -1.0 # set as masked pixel
image = np.expand_dims(image, 0).transpose(0, 3, 1, 2)
image = torch.from_numpy(image)
return image
def get_time_cost(run_task_time, time_cost_str):
now_time = int(time.time()*1000)
if run_task_time == 0:
time_cost_str = 'start'
else:
if time_cost_str != '':
time_cost_str += f'-->'
time_cost_str += f'{now_time - run_task_time}'
run_task_time = now_time
return run_task_time, time_cost_str
def create_demo() -> gr.Blocks:
with gr.Blocks() as demo:
croper = gr.State()
with gr.Row():
with gr.Column():
edit_prompt = gr.Textbox(lines=1, label="Edit Prompt", value=DEFAULT_EDIT_PROMPT)
generate_size = gr.Number(label="Generate Size", value=768)
with gr.Column():
num_steps = gr.Slider(minimum=1, maximum=100, value=20, step=1, label="Num Steps")
guidance_scale = gr.Slider(minimum=0, maximum=30, value=5, step=0.5, label="Guidance Scale")
with gr.Column():
strength = gr.Slider(minimum=0, maximum=2, value=0.2, step=0.1, label="Strength")
with gr.Accordion("Advanced Options", open=False):
cond_scale1 = gr.Slider(minimum=0, maximum=3, value=1.2, step=0.1, label="Cond Scale1")
cond_scale2 = gr.Slider(minimum=0, maximum=3, value=1.2, step=0.1, label="Cond Scale2")
mask_expansion = gr.Number(label="Mask Expansion", value=50, visible=True)
mask_dilation = gr.Slider(minimum=0, maximum=10, value=2, step=1, label="Mask Dilation")
seed = gr.Number(label="Seed", value=8)
category = gr.Textbox(label="Category", value=DEFAULT_CATEGORY, visible=False)
g_btn = gr.Button("Edit Image")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", type="pil")
with gr.Column():
restored_image = gr.Image(label="Restored Image", type="pil", interactive=False)
with gr.Column():
origin_area_image = gr.Image(label="Origin Area Image", type="pil", interactive=False)
generated_image = gr.Image(label="Generated Image", type="pil", interactive=False)
generated_cost = gr.Textbox(label="Time cost by step (ms):", visible=True, interactive=False)
mask_image = gr.Image(label="Mask Image", type="pil", interactive=False)
g_btn.click(
fn=segment_image_withmask,
inputs=[input_image, category, generate_size, mask_expansion, mask_dilation],
outputs=[origin_area_image, mask_image, croper],
).success(
fn=image_to_image,
inputs=[origin_area_image, mask_image, edit_prompt,seed, num_steps, guidance_scale, strength, generate_size, cond_scale1, cond_scale2],
outputs=[generated_image, generated_cost],
).success(
fn=restore_result,
inputs=[croper, category, generated_image],
outputs=[restored_image],
)
return demo