|
|
|
|
|
import typing as tp |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from dataclasses import dataclass, field, fields |
|
|
from itertools import chain |
|
|
import warnings |
|
|
import torch.nn.functional as F |
|
|
from torch.nn.utils.rnn import pad_sequence |
|
|
from codeclm.utils.utils import length_to_mask, collate |
|
|
from codeclm.modules.streaming import StreamingModule |
|
|
from collections import defaultdict |
|
|
from copy import deepcopy |
|
|
ConditionType = tp.Tuple[torch.Tensor, torch.Tensor] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AudioCondition(tp.NamedTuple): |
|
|
wav: torch.Tensor |
|
|
length: torch.Tensor |
|
|
sample_rate: tp.List[int] |
|
|
path: tp.List[tp.Optional[str]] = [] |
|
|
seek_time: tp.List[tp.Optional[float]] = [] |
|
|
|
|
|
@dataclass |
|
|
class ConditioningAttributes: |
|
|
text: tp.Dict[str, tp.Optional[str]] = field(default_factory=dict) |
|
|
audio: tp.Dict[str, AudioCondition] = field(default_factory=dict) |
|
|
|
|
|
def __getitem__(self, item): |
|
|
return getattr(self, item) |
|
|
|
|
|
@property |
|
|
def text_attributes(self): |
|
|
return self.text.keys() |
|
|
|
|
|
@property |
|
|
def audio_attributes(self): |
|
|
return self.audio.keys() |
|
|
|
|
|
@property |
|
|
def attributes(self): |
|
|
return { |
|
|
"text": self.text_attributes, |
|
|
"audio": self.audio_attributes, |
|
|
} |
|
|
|
|
|
def to_flat_dict(self): |
|
|
return { |
|
|
**{f"text.{k}": v for k, v in self.text.items()}, |
|
|
**{f"audio.{k}": v for k, v in self.audio.items()}, |
|
|
} |
|
|
|
|
|
@classmethod |
|
|
def from_flat_dict(cls, x): |
|
|
out = cls() |
|
|
for k, v in x.items(): |
|
|
kind, att = k.split(".") |
|
|
out[kind][att] = v |
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BaseConditioner(nn.Module): |
|
|
"""Base model for all conditioner modules. |
|
|
We allow the output dim to be different than the hidden dim for two reasons: |
|
|
1) keep our LUTs small when the vocab is large; |
|
|
2) make all condition dims consistent. |
|
|
|
|
|
Args: |
|
|
dim (int): Hidden dim of the model. |
|
|
output_dim (int): Output dim of the conditioner. |
|
|
""" |
|
|
def __init__(self, dim: int, output_dim: int, input_token = False, padding_idx=0): |
|
|
super().__init__() |
|
|
self.dim = dim |
|
|
self.output_dim = output_dim |
|
|
if input_token: |
|
|
self.output_proj = nn.Embedding(dim, output_dim, padding_idx) |
|
|
else: |
|
|
self.output_proj = nn.Linear(dim, output_dim) |
|
|
|
|
|
def tokenize(self, *args, **kwargs) -> tp.Any: |
|
|
"""Should be any part of the processing that will lead to a synchronization |
|
|
point, e.g. BPE tokenization with transfer to the GPU. |
|
|
|
|
|
The returned value will be saved and return later when calling forward(). |
|
|
""" |
|
|
raise NotImplementedError() |
|
|
|
|
|
def forward(self, inputs: tp.Any) -> ConditionType: |
|
|
"""Gets input that should be used as conditioning (e.g, genre, description or a waveform). |
|
|
Outputs a ConditionType, after the input data was embedded as a dense vector. |
|
|
|
|
|
Returns: |
|
|
ConditionType: |
|
|
- A tensor of size [B, T, D] where B is the batch size, T is the length of the |
|
|
output embedding and D is the dimension of the embedding. |
|
|
- And a mask indicating where the padding tokens. |
|
|
""" |
|
|
raise NotImplementedError() |
|
|
|
|
|
class TextConditioner(BaseConditioner): |
|
|
... |
|
|
|
|
|
|
|
|
class QwTokenizerConditioner(TextConditioner): |
|
|
def __init__(self, output_dim: int, |
|
|
token_path = "", |
|
|
max_len = 300, |
|
|
add_token_list=[]): |
|
|
from transformers import Qwen2Tokenizer |
|
|
self.text_tokenizer = Qwen2Tokenizer.from_pretrained(token_path) |
|
|
if add_token_list != []: |
|
|
self.text_tokenizer.add_tokens(add_token_list, special_tokens=True) |
|
|
voc_size = len(self.text_tokenizer.get_vocab()) |
|
|
|
|
|
super().__init__(voc_size, output_dim, input_token=True, padding_idx=151643) |
|
|
self.max_len = max_len |
|
|
self.padding_idx =' <|endoftext|>' |
|
|
|
|
|
vocab = self.text_tokenizer.get_vocab() |
|
|
|
|
|
struct_tokens = [i for i in add_token_list if i[0]=='[' and i[-1]==']'] |
|
|
self.struct_token_ids = [vocab[i] for i in struct_tokens] |
|
|
self.pad_token_idx = 151643 |
|
|
|
|
|
self.structure_emb = nn.Embedding(200, output_dim, padding_idx=0) |
|
|
|
|
|
print("all structure tokens: ", {self.text_tokenizer.convert_ids_to_tokens(i):i for i in self.struct_token_ids}) |
|
|
|
|
|
def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Dict[str, torch.Tensor]: |
|
|
x = ['<|im_start|>' + xi if xi is not None else "<|im_start|>" for xi in x] |
|
|
|
|
|
inputs = self.text_tokenizer(x, return_tensors="pt", padding=True) |
|
|
return inputs |
|
|
|
|
|
def forward(self, inputs: tp.Dict[str, torch.Tensor]) -> ConditionType: |
|
|
""" |
|
|
Add structure embeddings of {verse, chorus, bridge} to text/lyric tokens that |
|
|
belong to these structures accordingly, |
|
|
Then delete or keep these structure embeddings. |
|
|
""" |
|
|
mask = inputs['attention_mask'] |
|
|
tokens = inputs['input_ids'] |
|
|
B = tokens.shape[0] |
|
|
is_sp_embed = torch.any(torch.stack([tokens == i for i in self.struct_token_ids], dim=-1),dim=-1) |
|
|
|
|
|
tp_cover_range = torch.zeros_like(tokens) |
|
|
for b, is_sp in enumerate(is_sp_embed): |
|
|
sp_list = torch.where(is_sp)[0].tolist() |
|
|
sp_list.append(mask[b].sum()) |
|
|
for i, st in enumerate(sp_list[:-1]): |
|
|
tp_cover_range[b, st: sp_list[i+1]] = tokens[b, st] - 151645 |
|
|
|
|
|
if self.max_len is not None: |
|
|
if inputs['input_ids'].shape[-1] > self.max_len: |
|
|
warnings.warn(f"Max len limit ({self.max_len}) Exceed! \ |
|
|
{[self.text_tokenizer.convert_ids_to_tokens(i.tolist()) for i in tokens]} will be cut!") |
|
|
tokens = self.pad_2d_tensor(tokens, self.max_len, self.pad_token_idx).to(self.output_proj.weight.device) |
|
|
mask = self.pad_2d_tensor(mask, self.max_len, 0).to(self.output_proj.weight.device) |
|
|
tp_cover_range = self.pad_2d_tensor(tp_cover_range, self.max_len, 0).to(self.output_proj.weight.device) |
|
|
device = self.output_proj.weight.device |
|
|
content_embeds = self.output_proj(tokens.to(device)) |
|
|
structure_embeds = self.structure_emb(tp_cover_range.to(device)) |
|
|
|
|
|
embeds = content_embeds + structure_embeds |
|
|
return embeds, embeds, mask |
|
|
|
|
|
def pad_2d_tensor(self, x, max_len, pad_id): |
|
|
batch_size, seq_len = x.size() |
|
|
pad_len = max_len - seq_len |
|
|
|
|
|
if pad_len > 0: |
|
|
pad_tensor = torch.full((batch_size, pad_len), pad_id, dtype=x.dtype, device=x.device) |
|
|
padded_tensor = torch.cat([x, pad_tensor], dim=1) |
|
|
elif pad_len < 0: |
|
|
padded_tensor = x[:, :max_len] |
|
|
else: |
|
|
padded_tensor = x |
|
|
|
|
|
return padded_tensor |
|
|
|
|
|
|
|
|
class QwTextConditioner(TextConditioner): |
|
|
def __init__(self, output_dim: int, |
|
|
token_path = "", |
|
|
max_len = 300, |
|
|
version: str = 'v1.0'): |
|
|
|
|
|
from transformers import Qwen2Tokenizer |
|
|
self.text_tokenizer = Qwen2Tokenizer.from_pretrained(token_path) |
|
|
if version == 'v1.5': |
|
|
self.text_tokenizer.add_tokens(['[Musicality-very-high]', '[Musicality-high]', '[Musicality-medium]', '[Musicality-low]', '[Musicality-very-low]'], special_tokens=True) |
|
|
voc_size = len(self.text_tokenizer.get_vocab()) |
|
|
|
|
|
super().__init__(voc_size, output_dim, input_token=True, padding_idx=151643) |
|
|
|
|
|
self.max_len = max_len |
|
|
|
|
|
def tokenize(self, x: tp.List[tp.Optional[str]]) -> tp.Dict[str, torch.Tensor]: |
|
|
x = ['<|im_start|>' + xi if xi is not None else "<|im_start|>" for xi in x] |
|
|
inputs = self.text_tokenizer(x, return_tensors="pt", padding=True) |
|
|
return inputs |
|
|
|
|
|
def forward(self, inputs: tp.Dict[str, torch.Tensor], structure_dur = None) -> ConditionType: |
|
|
""" |
|
|
Add structure embeddings of {verse, chorus, bridge} to text/lyric tokens that |
|
|
belong to these structures accordingly, |
|
|
Then delete or keep these structure embeddings. |
|
|
""" |
|
|
mask = inputs['attention_mask'] |
|
|
tokens = inputs['input_ids'] |
|
|
|
|
|
if self.max_len is not None: |
|
|
if inputs['input_ids'].shape[-1] > self.max_len: |
|
|
warnings.warn(f"Max len limit ({self.max_len}) Exceed! \ |
|
|
{[self.text_tokenizer.convert_ids_to_tokens(i.tolist()) for i in tokens]} will be cut!") |
|
|
tokens = self.pad_2d_tensor(tokens, self.max_len, 151643).to(self.output_proj.weight.device) |
|
|
mask = self.pad_2d_tensor(mask, self.max_len, 0).to(self.output_proj.weight.device) |
|
|
|
|
|
embeds = self.output_proj(tokens) |
|
|
return embeds, embeds, mask |
|
|
|
|
|
def pad_2d_tensor(self, x, max_len, pad_id): |
|
|
batch_size, seq_len = x.size() |
|
|
pad_len = max_len - seq_len |
|
|
|
|
|
if pad_len > 0: |
|
|
pad_tensor = torch.full((batch_size, pad_len), pad_id, dtype=x.dtype, device=x.device) |
|
|
padded_tensor = torch.cat([x, pad_tensor], dim=1) |
|
|
elif pad_len < 0: |
|
|
padded_tensor = x[:, :max_len] |
|
|
else: |
|
|
padded_tensor = x |
|
|
|
|
|
return padded_tensor |
|
|
|
|
|
|
|
|
class AudioConditioner(BaseConditioner): |
|
|
... |
|
|
|
|
|
class QuantizedEmbeddingConditioner(AudioConditioner): |
|
|
def __init__(self, dim: int, |
|
|
code_size: int, |
|
|
code_depth: int, |
|
|
max_len: int, |
|
|
**kwargs): |
|
|
super().__init__(dim, dim, input_token=True) |
|
|
self.code_depth = code_depth |
|
|
|
|
|
self.emb = nn.ModuleList([nn.Embedding(code_size+2, dim, padding_idx=code_size+1) for _ in range(code_depth)]) |
|
|
|
|
|
self.EOT_emb = nn.Parameter(torch.randn(1, dim), requires_grad=True) |
|
|
self.layer2_EOT_emb = nn.Parameter(torch.randn(1, dim), requires_grad=True) |
|
|
self.output_proj = None |
|
|
self.max_len = max_len |
|
|
self.vocab_size = code_size |
|
|
|
|
|
def tokenize(self, x: AudioCondition) -> AudioCondition: |
|
|
"""no extra ops""" |
|
|
|
|
|
|
|
|
return x |
|
|
|
|
|
def forward(self, x: AudioCondition): |
|
|
wav, lengths, *_ = x |
|
|
B = wav.shape[0] |
|
|
wav = wav.reshape(B, self.code_depth, -1).long() |
|
|
if wav.shape[2] < self.max_len - 1: |
|
|
wav = F.pad(wav, [0, self.max_len - 1 - wav.shape[2]], value=self.vocab_size+1) |
|
|
else: |
|
|
wav = wav[:, :, :self.max_len-1] |
|
|
embeds1 = self.emb[0](wav[:, 0]) |
|
|
embeds1 = torch.cat((self.EOT_emb.unsqueeze(0).repeat(B, 1, 1), |
|
|
embeds1), dim=1) |
|
|
embeds2 = sum([self.emb[k](wav[:, k]) for k in range(1, self.code_depth)]) |
|
|
embeds2 = torch.cat((self.layer2_EOT_emb.unsqueeze(0).repeat(B, 1, 1), |
|
|
embeds2), dim=1) |
|
|
lengths = lengths + 1 |
|
|
lengths = torch.clamp(lengths, max=self.max_len) |
|
|
|
|
|
if lengths is not None: |
|
|
mask = length_to_mask(lengths, max_len=embeds1.shape[1]).int() |
|
|
else: |
|
|
mask = torch.ones((B, self.code_depth), device=embeds1.device, dtype=torch.int) |
|
|
return embeds1, embeds2, mask |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ConditionerProvider(nn.Module): |
|
|
"""Prepare and provide conditions given all the supported conditioners. |
|
|
|
|
|
Args: |
|
|
conditioners (dict): Dictionary of conditioners. |
|
|
device (torch.device or str, optional): Device for conditioners and output condition types. |
|
|
""" |
|
|
def __init__(self, conditioners: tp.Dict[str, BaseConditioner]): |
|
|
super().__init__() |
|
|
self.conditioners = nn.ModuleDict(conditioners) |
|
|
|
|
|
@property |
|
|
def text_conditions(self): |
|
|
return [k for k, v in self.conditioners.items() if isinstance(v, TextConditioner)] |
|
|
|
|
|
@property |
|
|
def audio_conditions(self): |
|
|
return [k for k, v in self.conditioners.items() if isinstance(v, AudioConditioner)] |
|
|
|
|
|
@property |
|
|
def has_audio_condition(self): |
|
|
return len(self.audio_conditions) > 0 |
|
|
|
|
|
def tokenize(self, inputs: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.Any]: |
|
|
"""Match attributes/audios with existing conditioners in self, and compute tokenize them accordingly. |
|
|
This should be called before starting any real GPU work to avoid synchronization points. |
|
|
This will return a dict matching conditioner names to their arbitrary tokenized representations. |
|
|
|
|
|
Args: |
|
|
inputs (list[ConditioningAttributes]): List of ConditioningAttributes objects containing |
|
|
text and audio conditions. |
|
|
""" |
|
|
assert all([isinstance(x, ConditioningAttributes) for x in inputs]), ( |
|
|
"Got unexpected types input for conditioner! should be tp.List[ConditioningAttributes]", |
|
|
f" but types were {set([type(x) for x in inputs])}") |
|
|
|
|
|
output = {} |
|
|
text = self._collate_text(inputs) |
|
|
audios = self._collate_audios(inputs) |
|
|
|
|
|
assert set(text.keys() | audios.keys()).issubset(set(self.conditioners.keys())), ( |
|
|
f"Got an unexpected attribute! Expected {self.conditioners.keys()}, ", |
|
|
f"got {text.keys(), audios.keys()}") |
|
|
|
|
|
for attribute, batch in chain(text.items(), audios.items()): |
|
|
output[attribute] = self.conditioners[attribute].tokenize(batch) |
|
|
return output |
|
|
|
|
|
def forward(self, tokenized: tp.Dict[str, tp.Any], structure_dur = None) -> tp.Dict[str, ConditionType]: |
|
|
"""Compute pairs of `(embedding, mask)` using the configured conditioners and the tokenized representations. |
|
|
The output is for example: |
|
|
{ |
|
|
"genre": (torch.Tensor([B, 1, D_genre]), torch.Tensor([B, 1])), |
|
|
"description": (torch.Tensor([B, T_desc, D_desc]), torch.Tensor([B, T_desc])), |
|
|
... |
|
|
} |
|
|
|
|
|
Args: |
|
|
tokenized (dict): Dict of tokenized representations as returned by `tokenize()`. |
|
|
""" |
|
|
output = {} |
|
|
for attribute, inputs in tokenized.items(): |
|
|
if attribute == 'description' and structure_dur is not None: |
|
|
condition1, condition2, mask = self.conditioners[attribute](inputs, structure_dur = structure_dur) |
|
|
else: |
|
|
condition1, condition2, mask = self.conditioners[attribute](inputs) |
|
|
output[attribute] = (condition1, condition2, mask) |
|
|
return output |
|
|
|
|
|
def _collate_text(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, tp.List[tp.Optional[str]]]: |
|
|
"""Given a list of ConditioningAttributes objects, compile a dictionary where the keys |
|
|
are the attributes and the values are the aggregated input per attribute. |
|
|
For example: |
|
|
Input: |
|
|
[ |
|
|
ConditioningAttributes(text={"genre": "Rock", "description": "A rock song with a guitar solo"}, wav=...), |
|
|
ConditioningAttributes(text={"genre": "Hip-hop", "description": "A hip-hop verse"}, audio=...), |
|
|
] |
|
|
Output: |
|
|
{ |
|
|
"genre": ["Rock", "Hip-hop"], |
|
|
"description": ["A rock song with a guitar solo", "A hip-hop verse"] |
|
|
} |
|
|
|
|
|
Args: |
|
|
samples (list of ConditioningAttributes): List of ConditioningAttributes samples. |
|
|
Returns: |
|
|
dict[str, list[str, optional]]: A dictionary mapping an attribute name to text batch. |
|
|
""" |
|
|
out: tp.Dict[str, tp.List[tp.Optional[str]]] = defaultdict(list) |
|
|
texts = [x.text for x in samples] |
|
|
for text in texts: |
|
|
for condition in self.text_conditions: |
|
|
out[condition].append(text[condition]) |
|
|
return out |
|
|
|
|
|
def _collate_audios(self, samples: tp.List[ConditioningAttributes]) -> tp.Dict[str, AudioCondition]: |
|
|
"""Generate a dict where the keys are attributes by which we fetch similar audios, |
|
|
and the values are Tensors of audios according to said attributes. |
|
|
|
|
|
*Note*: by the time the samples reach this function, each sample should have some audios |
|
|
inside the "audio" attribute. It should be either: |
|
|
1. A real audio |
|
|
2. A null audio due to the sample having no similar audios (nullified by the dataset) |
|
|
3. A null audio due to it being dropped in a dropout module (nullified by dropout) |
|
|
|
|
|
Args: |
|
|
samples (list of ConditioningAttributes): List of ConditioningAttributes samples. |
|
|
Returns: |
|
|
dict[str, WavCondition]: A dictionary mapping an attribute name to wavs. |
|
|
""" |
|
|
|
|
|
wavs = defaultdict(list) |
|
|
lengths = defaultdict(list) |
|
|
sample_rates = defaultdict(list) |
|
|
paths = defaultdict(list) |
|
|
seek_times = defaultdict(list) |
|
|
out: tp.Dict[str, AudioCondition] = {} |
|
|
|
|
|
for sample in samples: |
|
|
for attribute in self.audio_conditions: |
|
|
wav, length, sample_rate, path, seek_time = sample.audio[attribute] |
|
|
assert wav.dim() == 3, f"Got wav with dim={wav.dim()}, but expected 3 [1, C, T]" |
|
|
assert wav.size(0) == 1, f"Got wav [B, C, T] with shape={wav.shape}, but expected B == 1" |
|
|
wavs[attribute].append(wav.flatten()) |
|
|
lengths[attribute].append(length) |
|
|
sample_rates[attribute].extend(sample_rate) |
|
|
paths[attribute].extend(path) |
|
|
seek_times[attribute].extend(seek_time) |
|
|
|
|
|
|
|
|
for attribute in self.audio_conditions: |
|
|
stacked_wav, _ = collate(wavs[attribute], dim=0) |
|
|
out[attribute] = AudioCondition( |
|
|
stacked_wav.unsqueeze(1), |
|
|
torch.cat(lengths[attribute]), sample_rates[attribute], |
|
|
paths[attribute], seek_times[attribute]) |
|
|
|
|
|
return out |
|
|
|
|
|
|
|
|
class ConditionFuser(StreamingModule): |
|
|
"""Condition fuser handles the logic to combine the different conditions |
|
|
to the actual model input. |
|
|
|
|
|
Args: |
|
|
fuse2cond (tp.Dict[str, str]): A dictionary that says how to fuse |
|
|
each condition. For example: |
|
|
{ |
|
|
"prepend": ["description"], |
|
|
"sum": ["genre", "bpm"], |
|
|
} |
|
|
""" |
|
|
FUSING_METHODS = ["sum", "prepend"] |
|
|
|
|
|
def __init__(self, fuse2cond: tp.Dict[str, tp.List[str]]): |
|
|
super().__init__() |
|
|
assert all([k in self.FUSING_METHODS for k in fuse2cond.keys()] |
|
|
), f"Got invalid fuse method, allowed methods: {self.FUSING_METHODS}" |
|
|
self.fuse2cond: tp.Dict[str, tp.List[str]] = fuse2cond |
|
|
self.cond2fuse: tp.Dict[str, str] = {} |
|
|
for fuse_method, conditions in fuse2cond.items(): |
|
|
for condition in conditions: |
|
|
self.cond2fuse[condition] = fuse_method |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input1: torch.Tensor, |
|
|
input2: torch.Tensor, |
|
|
conditions: tp.Dict[str, ConditionType] |
|
|
) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: |
|
|
"""Fuse the conditions to the provided model input. |
|
|
|
|
|
Args: |
|
|
input (torch.Tensor): Transformer input. |
|
|
conditions (dict[str, ConditionType]): Dict of conditions. |
|
|
Returns: |
|
|
tuple[torch.Tensor, torch.Tensor]: The first tensor is the transformer input |
|
|
after the conditions have been fused. The second output tensor is the tensor |
|
|
used for cross-attention or None if no cross attention inputs exist. |
|
|
""" |
|
|
|
|
|
B, T, _ = input1.shape |
|
|
|
|
|
if 'offsets' in self._streaming_state: |
|
|
first_step = False |
|
|
offsets = self._streaming_state['offsets'] |
|
|
else: |
|
|
first_step = True |
|
|
offsets = torch.zeros(input1.shape[0], dtype=torch.long, device=input1.device) |
|
|
|
|
|
assert set(conditions.keys()).issubset(set(self.cond2fuse.keys())), \ |
|
|
f"given conditions contain unknown attributes for fuser, " \ |
|
|
f"expected {self.cond2fuse.keys()}, got {conditions.keys()}" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
fused_input_1 = input1 |
|
|
fused_input_2 = input2 |
|
|
for fuse_op in self.fuse2cond.keys(): |
|
|
fuse_op_conditions = self.fuse2cond[fuse_op] |
|
|
if fuse_op == 'sum' and len(fuse_op_conditions) > 0: |
|
|
for cond in fuse_op_conditions: |
|
|
this_cond_1, this_cond_2, cond_mask = conditions[cond] |
|
|
fused_input_1 += this_cond_1 |
|
|
fused_input_2 += this_cond_2 |
|
|
elif fuse_op == 'prepend' and len(fuse_op_conditions) > 0: |
|
|
if not first_step: |
|
|
continue |
|
|
reverse_list = deepcopy(fuse_op_conditions) |
|
|
reverse_list.reverse() |
|
|
for cond in reverse_list: |
|
|
this_cond_1, this_cond_2, cond_mask = conditions[cond] |
|
|
fused_input_1 = torch.cat((this_cond_1, fused_input_1), dim=1) |
|
|
fused_input_2 = torch.cat((this_cond_2, fused_input_2), dim=1) |
|
|
elif fuse_op not in self.FUSING_METHODS: |
|
|
raise ValueError(f"unknown op ({fuse_op})") |
|
|
|
|
|
if self._is_streaming: |
|
|
self._streaming_state['offsets'] = offsets + T |
|
|
|
|
|
return fused_input_1, fused_input_2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DropoutModule(nn.Module): |
|
|
"""Base module for all dropout modules.""" |
|
|
def __init__(self, seed: int = 1234): |
|
|
super().__init__() |
|
|
self.rng = torch.Generator() |
|
|
self.rng.manual_seed(seed) |
|
|
|
|
|
|
|
|
|
|
|
class ClassifierFreeGuidanceDropout(DropoutModule): |
|
|
"""Classifier Free Guidance dropout. |
|
|
All attributes are dropped with the same probability. |
|
|
|
|
|
Args: |
|
|
p (float): Probability to apply condition dropout during training. |
|
|
seed (int): Random seed. |
|
|
""" |
|
|
def __init__(self, p: float, seed: int = 1234): |
|
|
super().__init__(seed=seed) |
|
|
self.p = p |
|
|
|
|
|
def check(self, sample, condition_type, condition): |
|
|
|
|
|
if condition_type not in ['text', 'audio']: |
|
|
raise ValueError("dropout_condition got an unexpected condition type!" |
|
|
f" expected 'text', 'audio' but got '{condition_type}'") |
|
|
|
|
|
if condition not in getattr(sample, condition_type): |
|
|
raise ValueError( |
|
|
"dropout_condition received an unexpected condition!" |
|
|
f" expected audio={sample.audio.keys()} and text={sample.text.keys()}" |
|
|
f" but got '{condition}' of type '{condition_type}'!") |
|
|
|
|
|
|
|
|
def get_null_wav(self, wav, sr=48000) -> AudioCondition: |
|
|
out = wav * 0 + 16385 |
|
|
return AudioCondition( |
|
|
wav=out, |
|
|
length=torch.Tensor([0]).long(), |
|
|
sample_rate=[sr],) |
|
|
|
|
|
def dropout_condition(self, |
|
|
sample: ConditioningAttributes, |
|
|
condition_type: str, |
|
|
condition: str) -> ConditioningAttributes: |
|
|
"""Utility function for nullifying an attribute inside an ConditioningAttributes object. |
|
|
If the condition is of type "wav", then nullify it using `nullify_condition` function. |
|
|
If the condition is of any other type, set its value to None. |
|
|
Works in-place. |
|
|
""" |
|
|
self.check(sample, condition_type, condition) |
|
|
|
|
|
if condition_type == 'audio': |
|
|
audio_cond = sample.audio[condition] |
|
|
depth = audio_cond.wav.shape[1] |
|
|
sample.audio[condition] = self.get_null_wav(audio_cond.wav, sr=audio_cond.sample_rate[0]) |
|
|
else: |
|
|
sample.text[condition] = None |
|
|
|
|
|
return sample |
|
|
|
|
|
def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]: |
|
|
""" |
|
|
Args: |
|
|
samples (list[ConditioningAttributes]): List of conditions. |
|
|
Returns: |
|
|
list[ConditioningAttributes]: List of conditions after all attributes were set to None. |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
samples = deepcopy(samples) |
|
|
|
|
|
for sample in samples: |
|
|
drop = torch.rand(1, generator=self.rng).item() |
|
|
if drop<self.p: |
|
|
for condition_type in ["audio", "text"]: |
|
|
for condition in sample.attributes[condition_type]: |
|
|
self.dropout_condition(sample, condition_type, condition) |
|
|
return samples |
|
|
|
|
|
def __repr__(self): |
|
|
return f"ClassifierFreeGuidanceDropout(p={self.p})" |
|
|
|
|
|
|
|
|
class ClassifierFreeGuidanceDropoutInference(ClassifierFreeGuidanceDropout): |
|
|
"""Classifier Free Guidance dropout during inference. |
|
|
All attributes are dropped with the same probability. |
|
|
|
|
|
Args: |
|
|
p (float): Probability to apply condition dropout during training. |
|
|
seed (int): Random seed. |
|
|
""" |
|
|
def __init__(self, seed: int = 1234): |
|
|
super().__init__(p=1, seed=seed) |
|
|
|
|
|
def dropout_condition_customized(self, |
|
|
sample: ConditioningAttributes, |
|
|
condition_type: str, |
|
|
condition: str, |
|
|
customized: list = None) -> ConditioningAttributes: |
|
|
"""Utility function for nullifying an attribute inside an ConditioningAttributes object. |
|
|
If the condition is of type "audio", then nullify it using `nullify_condition` function. |
|
|
If the condition is of any other type, set its value to None. |
|
|
Works in-place. |
|
|
""" |
|
|
self.check(sample, condition_type, condition) |
|
|
|
|
|
if condition_type == 'audio': |
|
|
audio_cond = sample.audio[condition] |
|
|
depth = audio_cond.wav.shape[1] |
|
|
sample.audio[condition] = self.get_null_wav(audio_cond.wav, sr=audio_cond.sample_rate[0]) |
|
|
else: |
|
|
if customized is None: |
|
|
if condition in ['type_info'] and sample.text[condition] is not None: |
|
|
if "[Musicality-very-high]" in sample.text[condition]: |
|
|
sample.text[condition] = "[Musicality-very-low], ." |
|
|
print(f"cfg unconditioning: change sample.text[condition] to [Musicality-very-low]") |
|
|
else: |
|
|
sample.text[condition] = None |
|
|
else: |
|
|
sample.text[condition] = None |
|
|
else: |
|
|
text_cond = deepcopy(sample.text[condition]) |
|
|
if "structure" in customized: |
|
|
for _s in ['[inst]', '[outro]', '[intro]', '[verse]', '[chorus]', '[bridge]']: |
|
|
text_cond = text_cond.replace(_s, "") |
|
|
text_cond = text_cond.replace(' , ', '') |
|
|
text_cond = text_cond.replace(" ", " ") |
|
|
if '.' in customized: |
|
|
text_cond = text_cond.replace(" . ", " ") |
|
|
text_cond = text_cond.replace(".", " ") |
|
|
|
|
|
sample.text[condition] = text_cond |
|
|
|
|
|
return sample |
|
|
|
|
|
def forward(self, samples: tp.List[ConditioningAttributes], |
|
|
condition_types=["wav", "text"], |
|
|
customized=None, |
|
|
) -> tp.List[ConditioningAttributes]: |
|
|
""" |
|
|
100% dropout some condition attributes (description, prompt_wav) or types (text, wav) of |
|
|
samples during inference. |
|
|
|
|
|
Args: |
|
|
samples (list[ConditioningAttributes]): List of conditions. |
|
|
Returns: |
|
|
list[ConditioningAttributes]: List of conditions after all attributes were set to None. |
|
|
""" |
|
|
new_samples = deepcopy(samples) |
|
|
for condition_type in condition_types: |
|
|
for sample in new_samples: |
|
|
for condition in sample.attributes[condition_type]: |
|
|
self.dropout_condition_customized(sample, condition_type, condition, customized) |
|
|
return new_samples |
|
|
|
|
|
class AttributeDropout(ClassifierFreeGuidanceDropout): |
|
|
"""Dropout with a given probability per attribute. |
|
|
This is different from the behavior of ClassifierFreeGuidanceDropout as this allows for attributes |
|
|
to be dropped out separately. For example, "artist" can be dropped while "genre" remains. |
|
|
This is in contrast to ClassifierFreeGuidanceDropout where if "artist" is dropped "genre" |
|
|
must also be dropped. |
|
|
|
|
|
Args: |
|
|
p (tp.Dict[str, float]): A dict mapping between attributes and dropout probability. For example: |
|
|
... |
|
|
"genre": 0.1, |
|
|
"artist": 0.5, |
|
|
"audio": 0.25, |
|
|
... |
|
|
active_on_eval (bool, optional): Whether the dropout is active at eval. Default to False. |
|
|
seed (int, optional): Random seed. |
|
|
""" |
|
|
def __init__(self, p: tp.Dict[str, tp.Dict[str, float]], active_on_eval: bool = False, seed: int = 1234): |
|
|
super().__init__(p=p, seed=seed) |
|
|
self.active_on_eval = active_on_eval |
|
|
|
|
|
self.p = {} |
|
|
for condition_type, probs in p.items(): |
|
|
self.p[condition_type] = defaultdict(lambda: 0, probs) |
|
|
|
|
|
def forward(self, samples: tp.List[ConditioningAttributes]) -> tp.List[ConditioningAttributes]: |
|
|
""" |
|
|
Args: |
|
|
samples (list[ConditioningAttributes]): List of conditions. |
|
|
Returns: |
|
|
list[ConditioningAttributes]: List of conditions after certain attributes were set to None. |
|
|
""" |
|
|
if not self.training and not self.active_on_eval: |
|
|
return samples |
|
|
|
|
|
samples = deepcopy(samples) |
|
|
for condition_type, ps in self.p.items(): |
|
|
for condition, p in ps.items(): |
|
|
if torch.rand(1, generator=self.rng).item() < p: |
|
|
for sample in samples: |
|
|
self.dropout_condition(sample, condition_type, condition) |
|
|
return samples |
|
|
|