Spaces:
Sleeping
Sleeping
Merge branch 'lstm' of hf.co:spaces/smartbuildings/smart-buildings into lstm
Browse files- .gitignore +2 -1
- EnergyLSTM/EDA_lstm_energy.ipynb +262 -0
- EnergyLSTM/lstm_energy.ipynb +843 -0
.gitignore
CHANGED
@@ -3,4 +3,5 @@ venv
|
|
3 |
.vscode
|
4 |
__pycache__/
|
5 |
*.tf
|
6 |
-
data
|
|
|
|
3 |
.vscode
|
4 |
__pycache__/
|
5 |
*.tf
|
6 |
+
data
|
7 |
+
*.keras
|
EnergyLSTM/EDA_lstm_energy.ipynb
ADDED
@@ -0,0 +1,262 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": null,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd \n",
|
10 |
+
"from datetime import datetime \n",
|
11 |
+
"from datetime import timedelta\n",
|
12 |
+
"from datetime import date\n",
|
13 |
+
"import matplotlib.pyplot as plt\n",
|
14 |
+
"# import seaborn as sns\n",
|
15 |
+
"import numpy as np\n",
|
16 |
+
"import pandas as pd\n",
|
17 |
+
"from statsmodels.tsa.holtwinters import ExponentialSmoothing\n",
|
18 |
+
"\n",
|
19 |
+
"dataPATH = r\"C:\\Users\\levim\\OneDrive\\Documents\\MastersAI_ES\\TeamProject-5ARIP10\\smart-buildings\\Data\"\n",
|
20 |
+
"\n",
|
21 |
+
"### Load ALL data ###\n",
|
22 |
+
"# all_data = pd.read_csv(dataPATH + r\"\\long_merge.csv\")\n",
|
23 |
+
"all_data = pd.read_csv(dataPATH + r\"\\extended_energy_data.csv\")"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "markdown",
|
28 |
+
"metadata": {},
|
29 |
+
"source": [
|
30 |
+
"### Load selection of data"
|
31 |
+
]
|
32 |
+
},
|
33 |
+
{
|
34 |
+
"cell_type": "code",
|
35 |
+
"execution_count": null,
|
36 |
+
"metadata": {},
|
37 |
+
"outputs": [],
|
38 |
+
"source": [
|
39 |
+
"# Prepar energy data set with extended features\n",
|
40 |
+
"feature_list = ['date', 'hvac_N', 'hvac_S', 'air_temp_set_1', 'solar_radiation_set_1']\n",
|
41 |
+
"extended_energy_data = all_data[feature_list]\n",
|
42 |
+
"\n",
|
43 |
+
"extended_energy_data['date'] = pd.to_datetime(extended_energy_data['date'])\n",
|
44 |
+
"extended_energy_data.set_index('date', inplace=True)\n",
|
45 |
+
"\n",
|
46 |
+
"# eed = extended energy data\n",
|
47 |
+
"# Resampling back to 15 minutes and 1 hour\n",
|
48 |
+
"eed_15m = extended_energy_data.resample('15T').mean()\n",
|
49 |
+
"eed_1h = extended_energy_data.resample('60T').mean()"
|
50 |
+
]
|
51 |
+
},
|
52 |
+
{
|
53 |
+
"cell_type": "code",
|
54 |
+
"execution_count": null,
|
55 |
+
"metadata": {
|
56 |
+
"vscode": {
|
57 |
+
"languageId": "ruby"
|
58 |
+
}
|
59 |
+
},
|
60 |
+
"outputs": [],
|
61 |
+
"source": [
|
62 |
+
"# Assuming you want to apply a moving average window of size 3 on the 'column_name' column\n",
|
63 |
+
"window_size = 4*4 # 4 hours\n",
|
64 |
+
"eed_15m_avg = eed_15m.copy()\n",
|
65 |
+
"eed_15m_avg['hvac_N'] = eed_15m['hvac_N'].rolling(window=window_size).mean()\n",
|
66 |
+
"eed_15m_avg['hvac_S'] = eed_15m['hvac_S'].rolling(window=window_size).mean()\n",
|
67 |
+
"\n",
|
68 |
+
"window_size = 4 # 4 hours\n",
|
69 |
+
"eed_1h_avg = eed_1h.copy()\n",
|
70 |
+
"eed_1h_avg['hvac_N'] = eed_1h['hvac_N'].rolling(window=window_size).mean()\n",
|
71 |
+
"eed_1h_avg['hvac_S'] = eed_1h['hvac_S'].rolling(window=window_size).mean()"
|
72 |
+
]
|
73 |
+
},
|
74 |
+
{
|
75 |
+
"cell_type": "code",
|
76 |
+
"execution_count": null,
|
77 |
+
"metadata": {},
|
78 |
+
"outputs": [],
|
79 |
+
"source": [
|
80 |
+
"%matplotlib qt\n",
|
81 |
+
"\n",
|
82 |
+
"start_date = '2018-06-02'\n",
|
83 |
+
"end_date = '2018-06-08'\n",
|
84 |
+
"\n",
|
85 |
+
"plt.plot(eed_15m['hvac_N'].loc[start_date:end_date])\n",
|
86 |
+
"plt.plot(eed_15m_avg['hvac_N'].loc[start_date:end_date])\n",
|
87 |
+
"plt.plot(eed_1h_avg['hvac_N'].loc[start_date:end_date])\n",
|
88 |
+
"plt.xticks(rotation=45)\n",
|
89 |
+
"plt.show()"
|
90 |
+
]
|
91 |
+
},
|
92 |
+
{
|
93 |
+
"cell_type": "code",
|
94 |
+
"execution_count": null,
|
95 |
+
"metadata": {},
|
96 |
+
"outputs": [],
|
97 |
+
"source": [
|
98 |
+
"%matplotlib qt\n",
|
99 |
+
"\n",
|
100 |
+
"plt.figure(figsize=(20,10))\n",
|
101 |
+
"plt.plot(eed_1h['hvac_S'])\n",
|
102 |
+
"plt.show()"
|
103 |
+
]
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"cell_type": "markdown",
|
107 |
+
"metadata": {},
|
108 |
+
"source": [
|
109 |
+
"### Filling data gaps"
|
110 |
+
]
|
111 |
+
},
|
112 |
+
{
|
113 |
+
"cell_type": "code",
|
114 |
+
"execution_count": null,
|
115 |
+
"metadata": {},
|
116 |
+
"outputs": [],
|
117 |
+
"source": [
|
118 |
+
"def fillgap(firstTS, secondTS, seasonal_periods):\n",
|
119 |
+
" \n",
|
120 |
+
" #PREPARATION\n",
|
121 |
+
" one = timedelta(hours=1)\n",
|
122 |
+
" secondTSr = secondTS[::-1].copy()\n",
|
123 |
+
" firstTSr = firstTS[::-1].copy()\n",
|
124 |
+
" indexr = pd.date_range(start=firstTS.index[0], end=secondTS.index[-1], freq='H')\n",
|
125 |
+
" firstTSr.index = indexr[-len(firstTSr):]\n",
|
126 |
+
" secondTSr.index = indexr[:len(secondTSr)]\n",
|
127 |
+
" \n",
|
128 |
+
" #FORWARD \n",
|
129 |
+
" es = ExponentialSmoothing(firstTS, seasonal_periods=seasonal_periods,seasonal='add', freq='H').fit()\n",
|
130 |
+
" forwardPrediction = es.predict(start=firstTS.index[-1]+one, end=secondTS.index[0]-one)\n",
|
131 |
+
" \n",
|
132 |
+
" #BACKWARD\n",
|
133 |
+
" es = ExponentialSmoothing(secondTSr, seasonal_periods=seasonal_periods,seasonal='add', freq='H').fit()\n",
|
134 |
+
" backwardPrediction = es.predict(start=secondTSr.index[-1]+one, end=firstTSr.index[0]-one)\n",
|
135 |
+
" \n",
|
136 |
+
" #INTERPOLATION\n",
|
137 |
+
" l = len(forwardPrediction)\n",
|
138 |
+
" interpolation = pd.Series([(backwardPrediction[i] * i + forwardPrediction[i] * (l -i) )/ l for i in range(l)], index=forwardPrediction.index.copy())\n",
|
139 |
+
" \n",
|
140 |
+
" return interpolation"
|
141 |
+
]
|
142 |
+
},
|
143 |
+
{
|
144 |
+
"cell_type": "code",
|
145 |
+
"execution_count": null,
|
146 |
+
"metadata": {},
|
147 |
+
"outputs": [],
|
148 |
+
"source": [
|
149 |
+
"# Function to split the data into multiple DataFrames based on the gaps\n",
|
150 |
+
"def split_dfs(data):\n",
|
151 |
+
"\n",
|
152 |
+
" # Prepare the DataFrame\n",
|
153 |
+
" df = data.copy()\n",
|
154 |
+
" df = df.reset_index()\n",
|
155 |
+
" df = df.dropna()\n",
|
156 |
+
" \n",
|
157 |
+
" # Set the maximum allowable gap (e.g., 1 hour)\n",
|
158 |
+
" max_gap = pd.Timedelta(hours=1)\n",
|
159 |
+
"\n",
|
160 |
+
" # Calculate the differences between consecutive timestamps\n",
|
161 |
+
" time_diff = df['date'].diff()\n",
|
162 |
+
"\n",
|
163 |
+
" # Identify gaps larger than the maximum allowable gap\n",
|
164 |
+
" gaps = time_diff > max_gap\n",
|
165 |
+
"\n",
|
166 |
+
" # Create a new column to identify different groups\n",
|
167 |
+
" df['group'] = gaps.cumsum()\n",
|
168 |
+
"\n",
|
169 |
+
" df.set_index('date', inplace=True)\n",
|
170 |
+
"\n",
|
171 |
+
" # Split the DataFrame into a list of DataFrames based on the groups\n",
|
172 |
+
" dfs = [group for _, group in df.groupby('group')]\n",
|
173 |
+
"\n",
|
174 |
+
" return dfs"
|
175 |
+
]
|
176 |
+
},
|
177 |
+
{
|
178 |
+
"cell_type": "code",
|
179 |
+
"execution_count": null,
|
180 |
+
"metadata": {},
|
181 |
+
"outputs": [],
|
182 |
+
"source": [
|
183 |
+
"def interpolate_gaps(data, col):\n",
|
184 |
+
"\n",
|
185 |
+
" # Split the data into multiple DataFrames based on the gaps\n",
|
186 |
+
" dfs = split_dfs(data[[col]])\n",
|
187 |
+
"\n",
|
188 |
+
" # Interpolate the gaps between the DataFrames\n",
|
189 |
+
" ip_df = pd.DataFrame()\n",
|
190 |
+
" for ii in range(len(dfs)-1):\n",
|
191 |
+
" seasonal_periods = max(min([len(dfs[ii]), len(dfs[ii+1])]) // 2 - 10, 2)\n",
|
192 |
+
" \n",
|
193 |
+
" if seasonal_periods > 24*7: # Using more than 1 week of seasonal patterns is not necessary\n",
|
194 |
+
" seasonal_periods = 24*7\n",
|
195 |
+
" interpolation = fillgap(dfs[ii][col], dfs[ii+1][col], seasonal_periods)\n",
|
196 |
+
" else:\n",
|
197 |
+
" interpolation = fillgap(dfs[ii][col], dfs[ii+1][col], seasonal_periods)\n",
|
198 |
+
"\n",
|
199 |
+
" ip_df = pd.concat([ip_df,dfs[ii][col],interpolation])\n",
|
200 |
+
" \n",
|
201 |
+
" # Add the last DataFrame\n",
|
202 |
+
" ip_df = pd.concat([ip_df,dfs[-1][col]])\n",
|
203 |
+
"\n",
|
204 |
+
" return ip_df"
|
205 |
+
]
|
206 |
+
},
|
207 |
+
{
|
208 |
+
"cell_type": "code",
|
209 |
+
"execution_count": null,
|
210 |
+
"metadata": {},
|
211 |
+
"outputs": [],
|
212 |
+
"source": [
|
213 |
+
"# interpolation of the whole data set\n",
|
214 |
+
"\n",
|
215 |
+
"ip_eed_1h = pd.DataFrame()\n",
|
216 |
+
"for ii in eed_1h.columns:\n",
|
217 |
+
" ip_df = interpolate_gaps(eed_1h['2018-1-2':], ii)\n",
|
218 |
+
" ip_eed_1h = pd.concat([ip_eed_1h, ip_df[0]], axis=1) # axis=1 for horizontal concat\n",
|
219 |
+
"ip_eed_1h.columns = list(eed_1h.columns)\n",
|
220 |
+
"\n",
|
221 |
+
"ip_eed_1h = ip_eed_1h.set_axis('date', axis=0)\n",
|
222 |
+
"ip_eed_1h.to_csv(dataPATH + r\"\\interpolated_energy_data.csv\")\n",
|
223 |
+
"\n",
|
224 |
+
"ip_eed_1h.head()"
|
225 |
+
]
|
226 |
+
},
|
227 |
+
{
|
228 |
+
"cell_type": "code",
|
229 |
+
"execution_count": null,
|
230 |
+
"metadata": {},
|
231 |
+
"outputs": [],
|
232 |
+
"source": [
|
233 |
+
"%matplotlib qt\n",
|
234 |
+
"# plt.plot(eed_1h['hvac_N'])\n",
|
235 |
+
"plt.plot(ip_df)\n",
|
236 |
+
"\n",
|
237 |
+
"plt.show()"
|
238 |
+
]
|
239 |
+
}
|
240 |
+
],
|
241 |
+
"metadata": {
|
242 |
+
"kernelspec": {
|
243 |
+
"display_name": "experiments",
|
244 |
+
"language": "python",
|
245 |
+
"name": "python3"
|
246 |
+
},
|
247 |
+
"language_info": {
|
248 |
+
"codemirror_mode": {
|
249 |
+
"name": "ipython",
|
250 |
+
"version": 3
|
251 |
+
},
|
252 |
+
"file_extension": ".py",
|
253 |
+
"mimetype": "text/x-python",
|
254 |
+
"name": "python",
|
255 |
+
"nbconvert_exporter": "python",
|
256 |
+
"pygments_lexer": "ipython3",
|
257 |
+
"version": "3.8.15"
|
258 |
+
}
|
259 |
+
},
|
260 |
+
"nbformat": 4,
|
261 |
+
"nbformat_minor": 2
|
262 |
+
}
|
EnergyLSTM/lstm_energy.ipynb
ADDED
@@ -0,0 +1,843 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 85,
|
6 |
+
"metadata": {},
|
7 |
+
"outputs": [],
|
8 |
+
"source": [
|
9 |
+
"import pandas as pd \n",
|
10 |
+
"from datetime import datetime \n",
|
11 |
+
"from datetime import date\n",
|
12 |
+
"import matplotlib.pyplot as plt\n",
|
13 |
+
"import numpy as np\n",
|
14 |
+
"import pandas as pd\n",
|
15 |
+
"from keras.models import Sequential\n",
|
16 |
+
"from keras.layers import LSTM, Dense\n",
|
17 |
+
"from sklearn.model_selection import train_test_split\n",
|
18 |
+
"from sklearn.preprocessing import MinMaxScaler,StandardScaler\n",
|
19 |
+
"from keras.callbacks import ModelCheckpoint\n",
|
20 |
+
"\n",
|
21 |
+
"dataPATH = r\"C:\\Users\\levim\\OneDrive\\Documents\\MastersAI_ES\\TeamProject-5ARIP10\\smart-buildings\\Data\"\n",
|
22 |
+
"# all_data = pd.read_csv(dataPATH + r\"\\long_merge.csv\")\n",
|
23 |
+
"all_data = pd.read_csv(dataPATH + r\"\\extended_energy_data.csv\")\n",
|
24 |
+
"interpolated_data = pd.read_csv(dataPATH + r\"\\interpolated_energy_data.csv\", index_col=0)"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": null,
|
30 |
+
"metadata": {},
|
31 |
+
"outputs": [],
|
32 |
+
"source": [
|
33 |
+
"# Prepar energy data set with extended features\n",
|
34 |
+
"feature_list = ['date', 'hvac_N', 'hvac_S', 'air_temp_set_1', 'solar_radiation_set_1']\n",
|
35 |
+
"extended_energy_data = all_data[feature_list]\n",
|
36 |
+
"\n",
|
37 |
+
"extended_energy_data['date'] = pd.to_datetime(extended_energy_data['date'])\n",
|
38 |
+
"extended_energy_data.set_index('date', inplace=True)\n",
|
39 |
+
"\n",
|
40 |
+
"eed_15m = extended_energy_data.resample('15T').mean()\n",
|
41 |
+
"eed_1h = extended_energy_data.resample('60T').mean()\n",
|
42 |
+
"\n",
|
43 |
+
"eed_15m = eed_15m.reset_index(drop=False)\n",
|
44 |
+
"eed_1h = eed_1h.reset_index(drop=False)\n",
|
45 |
+
"\n",
|
46 |
+
"window_size = 4*4 # 4 hours\n",
|
47 |
+
"eed_15m_avg = eed_15m.copy()\n",
|
48 |
+
"eed_15m_avg['hvac_N'] = eed_15m['hvac_N'].rolling(window=window_size).mean()\n",
|
49 |
+
"eed_15m_avg['hvac_S'] = eed_15m['hvac_S'].rolling(window=window_size).mean()\n",
|
50 |
+
"\n",
|
51 |
+
"window_size = 4 # 4 hours\n",
|
52 |
+
"eed_1h_avg = eed_1h.copy()\n",
|
53 |
+
"eed_1h_avg['hvac_N'] = eed_1h['hvac_N'].rolling(window=window_size).mean()\n",
|
54 |
+
"eed_1h_avg['hvac_S'] = eed_1h['hvac_S'].rolling(window=window_size).mean()\n",
|
55 |
+
"\n",
|
56 |
+
"eed_15m.head()"
|
57 |
+
]
|
58 |
+
},
|
59 |
+
{
|
60 |
+
"cell_type": "code",
|
61 |
+
"execution_count": 86,
|
62 |
+
"metadata": {},
|
63 |
+
"outputs": [
|
64 |
+
{
|
65 |
+
"data": {
|
66 |
+
"text/html": [
|
67 |
+
"<div>\n",
|
68 |
+
"<style scoped>\n",
|
69 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
70 |
+
" vertical-align: middle;\n",
|
71 |
+
" }\n",
|
72 |
+
"\n",
|
73 |
+
" .dataframe tbody tr th {\n",
|
74 |
+
" vertical-align: top;\n",
|
75 |
+
" }\n",
|
76 |
+
"\n",
|
77 |
+
" .dataframe thead th {\n",
|
78 |
+
" text-align: right;\n",
|
79 |
+
" }\n",
|
80 |
+
"</style>\n",
|
81 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
82 |
+
" <thead>\n",
|
83 |
+
" <tr style=\"text-align: right;\">\n",
|
84 |
+
" <th></th>\n",
|
85 |
+
" <th>date</th>\n",
|
86 |
+
" <th>hvac_N</th>\n",
|
87 |
+
" <th>hvac_S</th>\n",
|
88 |
+
" <th>day_of_week</th>\n",
|
89 |
+
" <th>air_temp_set_1</th>\n",
|
90 |
+
" <th>solar_radiation_set_1</th>\n",
|
91 |
+
" </tr>\n",
|
92 |
+
" </thead>\n",
|
93 |
+
" <tbody>\n",
|
94 |
+
" <tr>\n",
|
95 |
+
" <th>0</th>\n",
|
96 |
+
" <td>2018-01-02 00:00:00</td>\n",
|
97 |
+
" <td>38.225000</td>\n",
|
98 |
+
" <td>26.4000</td>\n",
|
99 |
+
" <td>1</td>\n",
|
100 |
+
" <td>14.9550</td>\n",
|
101 |
+
" <td>87.4450</td>\n",
|
102 |
+
" </tr>\n",
|
103 |
+
" <tr>\n",
|
104 |
+
" <th>1</th>\n",
|
105 |
+
" <td>2018-01-02 01:00:00</td>\n",
|
106 |
+
" <td>38.297501</td>\n",
|
107 |
+
" <td>21.1750</td>\n",
|
108 |
+
" <td>1</td>\n",
|
109 |
+
" <td>14.2125</td>\n",
|
110 |
+
" <td>2.8675</td>\n",
|
111 |
+
" </tr>\n",
|
112 |
+
" <tr>\n",
|
113 |
+
" <th>2</th>\n",
|
114 |
+
" <td>2018-01-02 02:00:00</td>\n",
|
115 |
+
" <td>38.072500</td>\n",
|
116 |
+
" <td>21.7225</td>\n",
|
117 |
+
" <td>1</td>\n",
|
118 |
+
" <td>14.2700</td>\n",
|
119 |
+
" <td>0.0925</td>\n",
|
120 |
+
" </tr>\n",
|
121 |
+
" <tr>\n",
|
122 |
+
" <th>3</th>\n",
|
123 |
+
" <td>2018-01-02 03:00:00</td>\n",
|
124 |
+
" <td>39.147500</td>\n",
|
125 |
+
" <td>21.7000</td>\n",
|
126 |
+
" <td>1</td>\n",
|
127 |
+
" <td>14.1375</td>\n",
|
128 |
+
" <td>0.1175</td>\n",
|
129 |
+
" </tr>\n",
|
130 |
+
" <tr>\n",
|
131 |
+
" <th>4</th>\n",
|
132 |
+
" <td>2018-01-02 04:00:00</td>\n",
|
133 |
+
" <td>38.172500</td>\n",
|
134 |
+
" <td>21.6250</td>\n",
|
135 |
+
" <td>1</td>\n",
|
136 |
+
" <td>13.9850</td>\n",
|
137 |
+
" <td>0.0725</td>\n",
|
138 |
+
" </tr>\n",
|
139 |
+
" </tbody>\n",
|
140 |
+
"</table>\n",
|
141 |
+
"</div>"
|
142 |
+
],
|
143 |
+
"text/plain": [
|
144 |
+
" date hvac_N hvac_S day_of_week air_temp_set_1 \\\n",
|
145 |
+
"0 2018-01-02 00:00:00 38.225000 26.4000 1 14.9550 \n",
|
146 |
+
"1 2018-01-02 01:00:00 38.297501 21.1750 1 14.2125 \n",
|
147 |
+
"2 2018-01-02 02:00:00 38.072500 21.7225 1 14.2700 \n",
|
148 |
+
"3 2018-01-02 03:00:00 39.147500 21.7000 1 14.1375 \n",
|
149 |
+
"4 2018-01-02 04:00:00 38.172500 21.6250 1 13.9850 \n",
|
150 |
+
"\n",
|
151 |
+
" solar_radiation_set_1 \n",
|
152 |
+
"0 87.4450 \n",
|
153 |
+
"1 2.8675 \n",
|
154 |
+
"2 0.0925 \n",
|
155 |
+
"3 0.1175 \n",
|
156 |
+
"4 0.0725 "
|
157 |
+
]
|
158 |
+
},
|
159 |
+
"execution_count": 86,
|
160 |
+
"metadata": {},
|
161 |
+
"output_type": "execute_result"
|
162 |
+
}
|
163 |
+
],
|
164 |
+
"source": [
|
165 |
+
"# energy_data = pd.read_csv(dataPATH + r\"\\extended_energy_data.csv\")\n",
|
166 |
+
"# energy_data = eed_15m\n",
|
167 |
+
"# energy_data = eed_15m_avg\n",
|
168 |
+
"energy_data = interpolated_data.copy()\n",
|
169 |
+
"energy_data = energy_data.reset_index()\n",
|
170 |
+
"\n",
|
171 |
+
"# Convert the date column to datetime\n",
|
172 |
+
"energy_data['date'] = pd.to_datetime(energy_data['date'], format = \"%Y-%m-%d %H:%M:%S\")\n",
|
173 |
+
"\n",
|
174 |
+
"energy_data.insert(3, 'day_of_week', energy_data['date'].dt.weekday)\n",
|
175 |
+
"# Filter the data for the year 2019\n",
|
176 |
+
"df_filtered = energy_data[ (energy_data.date.dt.date >date(2018, 1, 1)) & (energy_data.date.dt.date< date(2021, 1, 1))]\n",
|
177 |
+
"\n",
|
178 |
+
"# Check for NA values in the DataFrame\n",
|
179 |
+
"if df_filtered.isna().any().any():\n",
|
180 |
+
" print(\"There are NA values in the DataFrame columns.\")\n",
|
181 |
+
"\n",
|
182 |
+
"df_filtered.head()"
|
183 |
+
]
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"cell_type": "code",
|
187 |
+
"execution_count": 88,
|
188 |
+
"metadata": {},
|
189 |
+
"outputs": [
|
190 |
+
{
|
191 |
+
"data": {
|
192 |
+
"text/plain": [
|
193 |
+
"[]"
|
194 |
+
]
|
195 |
+
},
|
196 |
+
"execution_count": 88,
|
197 |
+
"metadata": {},
|
198 |
+
"output_type": "execute_result"
|
199 |
+
}
|
200 |
+
],
|
201 |
+
"source": [
|
202 |
+
"testdataset_df = df_filtered[(df_filtered.date.dt.date >=date(2019, 3, 1)) & (df_filtered.date.dt.date <= date(2019, 6, 1))]\n",
|
203 |
+
"\n",
|
204 |
+
"traindataset_df = df_filtered[ (df_filtered.date.dt.date <date(2019, 3, 1)) | (df_filtered.date.dt.date > date(2019, 6, 1))]\n",
|
205 |
+
"\n",
|
206 |
+
"testdataset = testdataset_df.drop(columns=[\"date\"]).values\n",
|
207 |
+
"\n",
|
208 |
+
"traindataset = traindataset_df.drop(columns=[\"date\"]).values\n",
|
209 |
+
"\n",
|
210 |
+
"columns_with_na = traindataset_df.columns[traindataset_df.isna().any()].tolist()\n",
|
211 |
+
"columns_with_na"
|
212 |
+
]
|
213 |
+
},
|
214 |
+
{
|
215 |
+
"cell_type": "code",
|
216 |
+
"execution_count": 89,
|
217 |
+
"metadata": {},
|
218 |
+
"outputs": [],
|
219 |
+
"source": [
|
220 |
+
"traindataset = traindataset.astype('float32')\n",
|
221 |
+
"testdataset = testdataset.astype('float32')\n",
|
222 |
+
"\n",
|
223 |
+
"mintest = np.min(testdataset[:,0:2])\n",
|
224 |
+
"maxtest = np.max(testdataset[:,0:2])\n",
|
225 |
+
"\n",
|
226 |
+
"scaler = MinMaxScaler(feature_range=(0, 1))\n",
|
227 |
+
"traindataset = scaler.fit_transform(traindataset)\n",
|
228 |
+
"testdataset = scaler.transform(testdataset)"
|
229 |
+
]
|
230 |
+
},
|
231 |
+
{
|
232 |
+
"cell_type": "code",
|
233 |
+
"execution_count": 104,
|
234 |
+
"metadata": {},
|
235 |
+
"outputs": [],
|
236 |
+
"source": [
|
237 |
+
"def create_model(X_train, time_step, no_outputs):\n",
|
238 |
+
" model = Sequential()\n",
|
239 |
+
" model.add(LSTM(units=50, return_sequences=True, input_shape=(X_train.shape[1], X_train.shape[2])))\n",
|
240 |
+
" model.add(LSTM(units=50, return_sequences=True))\n",
|
241 |
+
" model.add(LSTM(units=time_step*no_outputs))\n",
|
242 |
+
" model.add(Dense(units=time_step*no_outputs))\n",
|
243 |
+
"\n",
|
244 |
+
" model.compile(optimizer='adam', loss='mean_squared_error')\n",
|
245 |
+
"\n",
|
246 |
+
" return model"
|
247 |
+
]
|
248 |
+
},
|
249 |
+
{
|
250 |
+
"cell_type": "markdown",
|
251 |
+
"metadata": {},
|
252 |
+
"source": [
|
253 |
+
"### Model 1 (continous predictions)"
|
254 |
+
]
|
255 |
+
},
|
256 |
+
{
|
257 |
+
"cell_type": "code",
|
258 |
+
"execution_count": 94,
|
259 |
+
"metadata": {},
|
260 |
+
"outputs": [
|
261 |
+
{
|
262 |
+
"name": "stdout",
|
263 |
+
"output_type": "stream",
|
264 |
+
"text": [
|
265 |
+
"Epoch 1/5\n",
|
266 |
+
"370/371 [============================>.] - ETA: 0s - loss: 0.0224\n",
|
267 |
+
"Epoch 1: val_loss improved from inf to 0.01162, saving model to lstm_energy_01.keras\n",
|
268 |
+
"371/371 [==============================] - 11s 15ms/step - loss: 0.0224 - val_loss: 0.0116\n",
|
269 |
+
"Epoch 2/5\n",
|
270 |
+
"368/371 [============================>.] - ETA: 0s - loss: 0.0139\n",
|
271 |
+
"Epoch 2: val_loss improved from 0.01162 to 0.01146, saving model to lstm_energy_01.keras\n",
|
272 |
+
"371/371 [==============================] - 5s 12ms/step - loss: 0.0139 - val_loss: 0.0115\n",
|
273 |
+
"Epoch 3/5\n",
|
274 |
+
"370/371 [============================>.] - ETA: 0s - loss: 0.0125\n",
|
275 |
+
"Epoch 3: val_loss improved from 0.01146 to 0.01132, saving model to lstm_energy_01.keras\n",
|
276 |
+
"371/371 [==============================] - 5s 13ms/step - loss: 0.0125 - val_loss: 0.0113\n",
|
277 |
+
"Epoch 4/5\n",
|
278 |
+
"367/371 [============================>.] - ETA: 0s - loss: 0.0119\n",
|
279 |
+
"Epoch 4: val_loss improved from 0.01132 to 0.01007, saving model to lstm_energy_01.keras\n",
|
280 |
+
"371/371 [==============================] - 5s 13ms/step - loss: 0.0119 - val_loss: 0.0101\n",
|
281 |
+
"Epoch 5/5\n",
|
282 |
+
"371/371 [==============================] - ETA: 0s - loss: 0.0117\n",
|
283 |
+
"Epoch 5: val_loss did not improve from 0.01007\n",
|
284 |
+
"371/371 [==============================] - 5s 13ms/step - loss: 0.0117 - val_loss: 0.0101\n"
|
285 |
+
]
|
286 |
+
},
|
287 |
+
{
|
288 |
+
"data": {
|
289 |
+
"text/plain": [
|
290 |
+
"<keras.callbacks.History at 0x1da353bd790>"
|
291 |
+
]
|
292 |
+
},
|
293 |
+
"execution_count": 94,
|
294 |
+
"metadata": {},
|
295 |
+
"output_type": "execute_result"
|
296 |
+
}
|
297 |
+
],
|
298 |
+
"source": [
|
299 |
+
"train,test = traindataset,testdataset\n",
|
300 |
+
"steps_in_past = 7 \n",
|
301 |
+
"time_step = 24\n",
|
302 |
+
"no_inputs = 5\n",
|
303 |
+
"no_outputs = 2\n",
|
304 |
+
"def create_dataset(dataset,time_step):\n",
|
305 |
+
" x = [[] for _ in range(no_inputs)] \n",
|
306 |
+
" Y = [[] for _ in range(no_outputs)]\n",
|
307 |
+
" for i in range(time_step * steps_in_past, len(dataset) - time_step * steps_in_past): # -time_step is to ensure that the Y value has enough values\n",
|
308 |
+
" for j in range(no_inputs):\n",
|
309 |
+
" x[j].append(dataset[(i-time_step*steps_in_past):i, j])\n",
|
310 |
+
" for j in range(no_outputs):\n",
|
311 |
+
" Y[j].append(dataset[i:i+time_step, j]) \n",
|
312 |
+
" x = [np.array(feature_list) for feature_list in x]\n",
|
313 |
+
" x = np.stack(x,axis=1)\n",
|
314 |
+
" Y = [np.array(feature_list) for feature_list in Y] \n",
|
315 |
+
" Y = np.stack(Y,axis=1)\n",
|
316 |
+
" Y = np.reshape(Y, (Y.shape[0], time_step*no_outputs))\n",
|
317 |
+
" return x, Y\n",
|
318 |
+
"\n",
|
319 |
+
"\n",
|
320 |
+
"X_train, y_train = create_dataset(train, time_step)\n",
|
321 |
+
"X_test, y_test = create_dataset(test, time_step)\n",
|
322 |
+
"\n",
|
323 |
+
"model = create_model(X_train, time_step, no_outputs)\n",
|
324 |
+
"checkpoint_path = \"lstm_energy_01.keras\"\n",
|
325 |
+
"checkpoint_callback = ModelCheckpoint(filepath=checkpoint_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min')\n",
|
326 |
+
"model.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=5, batch_size=64, verbose=1, callbacks=[checkpoint_callback])"
|
327 |
+
]
|
328 |
+
},
|
329 |
+
{
|
330 |
+
"cell_type": "code",
|
331 |
+
"execution_count": 95,
|
332 |
+
"metadata": {},
|
333 |
+
"outputs": [
|
334 |
+
{
|
335 |
+
"name": "stdout",
|
336 |
+
"output_type": "stream",
|
337 |
+
"text": [
|
338 |
+
"60/60 [==============================] - 0s 4ms/step - loss: 0.0101\n",
|
339 |
+
"60/60 [==============================] - 1s 3ms/step\n",
|
340 |
+
"Loss: 0.010141444392502308\n"
|
341 |
+
]
|
342 |
+
}
|
343 |
+
],
|
344 |
+
"source": [
|
345 |
+
"loss = model.evaluate(X_test, y_test)\n",
|
346 |
+
"test_predict1 = model.predict(X_test)\n",
|
347 |
+
"print(\"Loss: \", loss)\n",
|
348 |
+
"# Converting values back to the original scale\n",
|
349 |
+
"scalerBack = MinMaxScaler(feature_range=(mintest, maxtest))\n",
|
350 |
+
"test_predict2 = scalerBack.fit_transform(test_predict1)\n",
|
351 |
+
"y_test1 = scalerBack.fit_transform(y_test)\n"
|
352 |
+
]
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"cell_type": "code",
|
356 |
+
"execution_count": 100,
|
357 |
+
"metadata": {},
|
358 |
+
"outputs": [],
|
359 |
+
"source": [
|
360 |
+
"%matplotlib qt\n",
|
361 |
+
"\n",
|
362 |
+
"# Create a 3x3 grid of subplots\n",
|
363 |
+
"fig, axes = plt.subplots(3, 3, figsize=(10, 10))\n",
|
364 |
+
"\n",
|
365 |
+
"var = 15\n",
|
366 |
+
"# Loop over the value index\n",
|
367 |
+
"for i, ax in enumerate(axes.flat):\n",
|
368 |
+
" # Plot your data or perform any other operations\n",
|
369 |
+
" ax.plot(y_test1[var+i*9,0:time_step], label='Original Testing Data', color='blue')\n",
|
370 |
+
" ax.plot(test_predict2[var+i*9,0:time_step], label='Predicted Testing Data', color='red',alpha=0.8)\n",
|
371 |
+
" # ax.set_title(f'Plot {i+1}')\n",
|
372 |
+
" ax.set_title('Testing Data - Predicted vs Actual')\n",
|
373 |
+
" ax.set_xlabel('Time [hours]')\n",
|
374 |
+
" ax.set_ylabel('Energy Consumption [kW]') \n",
|
375 |
+
" ax.legend()\n",
|
376 |
+
"\n",
|
377 |
+
"# Adjust the spacing between subplots\n",
|
378 |
+
"plt.tight_layout()\n",
|
379 |
+
"\n",
|
380 |
+
"# Show the plot\n",
|
381 |
+
"plt.show()"
|
382 |
+
]
|
383 |
+
},
|
384 |
+
{
|
385 |
+
"cell_type": "code",
|
386 |
+
"execution_count": null,
|
387 |
+
"metadata": {},
|
388 |
+
"outputs": [],
|
389 |
+
"source": [
|
390 |
+
"# Autoregressive prediction\n",
|
391 |
+
"X_pred = testdataset.copy()\n",
|
392 |
+
"for i in range(steps_in_past,steps_in_past*2):\n",
|
393 |
+
" xin = X_pred[i-steps_in_past:i].reshape((1, steps_in_past, no_outputs)) \n",
|
394 |
+
" X_pred[i] = model.predict(xin, verbose = 0)"
|
395 |
+
]
|
396 |
+
},
|
397 |
+
{
|
398 |
+
"cell_type": "code",
|
399 |
+
"execution_count": null,
|
400 |
+
"metadata": {},
|
401 |
+
"outputs": [],
|
402 |
+
"source": [
|
403 |
+
"# Plot prediction vs actual for test data\n",
|
404 |
+
"plt.figure()\n",
|
405 |
+
"plt.plot(X_pred[steps_in_past:steps_in_past*2,0],':',label='LSTM')\n",
|
406 |
+
"plt.plot(testdataset[steps_in_past:steps_in_past*2,0],'--',label='Actual')\n",
|
407 |
+
"plt.legend()"
|
408 |
+
]
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"cell_type": "markdown",
|
412 |
+
"metadata": {},
|
413 |
+
"source": [
|
414 |
+
"### Model 2 (Predicting once per day)"
|
415 |
+
]
|
416 |
+
},
|
417 |
+
{
|
418 |
+
"cell_type": "code",
|
419 |
+
"execution_count": 105,
|
420 |
+
"metadata": {},
|
421 |
+
"outputs": [
|
422 |
+
{
|
423 |
+
"name": "stdout",
|
424 |
+
"output_type": "stream",
|
425 |
+
"text": [
|
426 |
+
"Epoch 1/20\n",
|
427 |
+
"13/16 [=======================>......] - ETA: 0s - loss: 0.0893\n",
|
428 |
+
"Epoch 1: val_loss improved from inf to 0.02898, saving model to lstm_energy_01.keras\n",
|
429 |
+
"16/16 [==============================] - 6s 100ms/step - loss: 0.0820 - val_loss: 0.0290\n",
|
430 |
+
"Epoch 2/20\n",
|
431 |
+
"13/16 [=======================>......] - ETA: 0s - loss: 0.0316\n",
|
432 |
+
"Epoch 2: val_loss improved from 0.02898 to 0.02435, saving model to lstm_energy_01.keras\n",
|
433 |
+
"16/16 [==============================] - 0s 20ms/step - loss: 0.0310 - val_loss: 0.0243\n",
|
434 |
+
"Epoch 3/20\n",
|
435 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0242\n",
|
436 |
+
"Epoch 3: val_loss improved from 0.02435 to 0.01740, saving model to lstm_energy_01.keras\n",
|
437 |
+
"16/16 [==============================] - 0s 24ms/step - loss: 0.0242 - val_loss: 0.0174\n",
|
438 |
+
"Epoch 4/20\n",
|
439 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0213\n",
|
440 |
+
"Epoch 4: val_loss improved from 0.01740 to 0.01566, saving model to lstm_energy_01.keras\n",
|
441 |
+
"16/16 [==============================] - 0s 25ms/step - loss: 0.0213 - val_loss: 0.0157\n",
|
442 |
+
"Epoch 5/20\n",
|
443 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0189\n",
|
444 |
+
"Epoch 5: val_loss improved from 0.01566 to 0.01483, saving model to lstm_energy_01.keras\n",
|
445 |
+
"16/16 [==============================] - 0s 25ms/step - loss: 0.0189 - val_loss: 0.0148\n",
|
446 |
+
"Epoch 6/20\n",
|
447 |
+
"13/16 [=======================>......] - ETA: 0s - loss: 0.0184\n",
|
448 |
+
"Epoch 6: val_loss improved from 0.01483 to 0.01359, saving model to lstm_energy_01.keras\n",
|
449 |
+
"16/16 [==============================] - 0s 25ms/step - loss: 0.0182 - val_loss: 0.0136\n",
|
450 |
+
"Epoch 7/20\n",
|
451 |
+
"14/16 [=========================>....] - ETA: 0s - loss: 0.0177\n",
|
452 |
+
"Epoch 7: val_loss improved from 0.01359 to 0.01285, saving model to lstm_energy_01.keras\n",
|
453 |
+
"16/16 [==============================] - 0s 22ms/step - loss: 0.0175 - val_loss: 0.0128\n",
|
454 |
+
"Epoch 8/20\n",
|
455 |
+
"13/16 [=======================>......] - ETA: 0s - loss: 0.0168\n",
|
456 |
+
"Epoch 8: val_loss did not improve from 0.01285\n",
|
457 |
+
"16/16 [==============================] - 0s 20ms/step - loss: 0.0171 - val_loss: 0.0148\n",
|
458 |
+
"Epoch 9/20\n",
|
459 |
+
"14/16 [=========================>....] - ETA: 0s - loss: 0.0178\n",
|
460 |
+
"Epoch 9: val_loss did not improve from 0.01285\n",
|
461 |
+
"16/16 [==============================] - 0s 20ms/step - loss: 0.0175 - val_loss: 0.0143\n",
|
462 |
+
"Epoch 10/20\n",
|
463 |
+
"15/16 [===========================>..] - ETA: 0s - loss: 0.0165\n",
|
464 |
+
"Epoch 10: val_loss improved from 0.01285 to 0.01277, saving model to lstm_energy_01.keras\n",
|
465 |
+
"16/16 [==============================] - 0s 22ms/step - loss: 0.0166 - val_loss: 0.0128\n",
|
466 |
+
"Epoch 11/20\n",
|
467 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0164\n",
|
468 |
+
"Epoch 11: val_loss did not improve from 0.01277\n",
|
469 |
+
"16/16 [==============================] - 0s 23ms/step - loss: 0.0164 - val_loss: 0.0139\n",
|
470 |
+
"Epoch 12/20\n",
|
471 |
+
"15/16 [===========================>..] - ETA: 0s - loss: 0.0162\n",
|
472 |
+
"Epoch 12: val_loss improved from 0.01277 to 0.01235, saving model to lstm_energy_01.keras\n",
|
473 |
+
"16/16 [==============================] - 1s 33ms/step - loss: 0.0162 - val_loss: 0.0124\n",
|
474 |
+
"Epoch 13/20\n",
|
475 |
+
"15/16 [===========================>..] - ETA: 0s - loss: 0.0154\n",
|
476 |
+
"Epoch 13: val_loss did not improve from 0.01235\n",
|
477 |
+
"16/16 [==============================] - 0s 20ms/step - loss: 0.0153 - val_loss: 0.0131\n",
|
478 |
+
"Epoch 14/20\n",
|
479 |
+
"13/16 [=======================>......] - ETA: 0s - loss: 0.0156\n",
|
480 |
+
"Epoch 14: val_loss did not improve from 0.01235\n",
|
481 |
+
"16/16 [==============================] - 0s 21ms/step - loss: 0.0160 - val_loss: 0.0136\n",
|
482 |
+
"Epoch 15/20\n",
|
483 |
+
"13/16 [=======================>......] - ETA: 0s - loss: 0.0167\n",
|
484 |
+
"Epoch 15: val_loss did not improve from 0.01235\n",
|
485 |
+
"16/16 [==============================] - 0s 20ms/step - loss: 0.0164 - val_loss: 0.0125\n",
|
486 |
+
"Epoch 16/20\n",
|
487 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0149\n",
|
488 |
+
"Epoch 16: val_loss improved from 0.01235 to 0.01134, saving model to lstm_energy_01.keras\n",
|
489 |
+
"16/16 [==============================] - 0s 25ms/step - loss: 0.0149 - val_loss: 0.0113\n",
|
490 |
+
"Epoch 17/20\n",
|
491 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0147\n",
|
492 |
+
"Epoch 17: val_loss did not improve from 0.01134\n",
|
493 |
+
"16/16 [==============================] - 0s 21ms/step - loss: 0.0147 - val_loss: 0.0125\n",
|
494 |
+
"Epoch 18/20\n",
|
495 |
+
"15/16 [===========================>..] - ETA: 0s - loss: 0.0143\n",
|
496 |
+
"Epoch 18: val_loss did not improve from 0.01134\n",
|
497 |
+
"16/16 [==============================] - 0s 23ms/step - loss: 0.0143 - val_loss: 0.0116\n",
|
498 |
+
"Epoch 19/20\n",
|
499 |
+
"15/16 [===========================>..] - ETA: 0s - loss: 0.0138\n",
|
500 |
+
"Epoch 19: val_loss improved from 0.01134 to 0.01108, saving model to lstm_energy_01.keras\n",
|
501 |
+
"16/16 [==============================] - 0s 23ms/step - loss: 0.0138 - val_loss: 0.0111\n",
|
502 |
+
"Epoch 20/20\n",
|
503 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0137\n",
|
504 |
+
"Epoch 20: val_loss improved from 0.01108 to 0.01093, saving model to lstm_energy_01.keras\n",
|
505 |
+
"16/16 [==============================] - 0s 25ms/step - loss: 0.0137 - val_loss: 0.0109\n"
|
506 |
+
]
|
507 |
+
},
|
508 |
+
{
|
509 |
+
"data": {
|
510 |
+
"text/plain": [
|
511 |
+
"<keras.callbacks.History at 0x1da50f44760>"
|
512 |
+
]
|
513 |
+
},
|
514 |
+
"execution_count": 105,
|
515 |
+
"metadata": {},
|
516 |
+
"output_type": "execute_result"
|
517 |
+
}
|
518 |
+
],
|
519 |
+
"source": [
|
520 |
+
"train,test = traindataset,testdataset\n",
|
521 |
+
"steps_in_past = 7 \n",
|
522 |
+
"time_step = 24\n",
|
523 |
+
"no_inputs = 5\n",
|
524 |
+
"no_outputs = 2\n",
|
525 |
+
"def create_dataset(dataset,time_step):\n",
|
526 |
+
" x = [[] for _ in range(no_inputs)] \n",
|
527 |
+
" Y = [[] for _ in range(no_outputs)]\n",
|
528 |
+
" for i in range(steps_in_past, round(len(dataset)/24) - steps_in_past): # -time_step is to ensure that the Y value has enough values\n",
|
529 |
+
" for j in range(no_inputs):\n",
|
530 |
+
" x[j].append(dataset[(i-steps_in_past)*time_step:i*time_step, j])\n",
|
531 |
+
" for j in range(no_outputs):\n",
|
532 |
+
" Y[j].append(dataset[i*time_step:(i+1)*time_step, j]) \n",
|
533 |
+
" x = [np.array(feature_list) for feature_list in x]\n",
|
534 |
+
" x = np.stack(x,axis=1)\n",
|
535 |
+
" Y = [np.array(feature_list) for feature_list in Y] \n",
|
536 |
+
" Y = np.stack(Y,axis=1)\n",
|
537 |
+
" Y = np.reshape(Y, (Y.shape[0], time_step*no_outputs))\n",
|
538 |
+
" return x, Y\n",
|
539 |
+
"\n",
|
540 |
+
"\n",
|
541 |
+
"X_train, y_train = create_dataset(train, time_step)\n",
|
542 |
+
"X_test, y_test = create_dataset(test, time_step)\n",
|
543 |
+
"\n",
|
544 |
+
"model2 = create_model(X_train, time_step, no_outputs)\n",
|
545 |
+
"checkpoint_path = \"lstm_energy_01.keras\"\n",
|
546 |
+
"checkpoint_callback = ModelCheckpoint(filepath=checkpoint_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min')\n",
|
547 |
+
"model2.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=20, batch_size=64, verbose=1, callbacks=[checkpoint_callback])"
|
548 |
+
]
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"cell_type": "code",
|
552 |
+
"execution_count": 106,
|
553 |
+
"metadata": {},
|
554 |
+
"outputs": [
|
555 |
+
{
|
556 |
+
"name": "stdout",
|
557 |
+
"output_type": "stream",
|
558 |
+
"text": [
|
559 |
+
"3/3 [==============================] - 0s 5ms/step - loss: 0.0109\n",
|
560 |
+
"3/3 [==============================] - 1s 5ms/step\n",
|
561 |
+
"Loss: 0.010930849239230156\n"
|
562 |
+
]
|
563 |
+
}
|
564 |
+
],
|
565 |
+
"source": [
|
566 |
+
"loss = model2.evaluate(X_test, y_test)\n",
|
567 |
+
"test_predict1 = model2.predict(X_test)\n",
|
568 |
+
"print(\"Loss: \", loss)\n",
|
569 |
+
"# Converting values back to the original scale\n",
|
570 |
+
"scalerBack = MinMaxScaler(feature_range=(mintest, maxtest))\n",
|
571 |
+
"test_predict2 = scalerBack.fit_transform(test_predict1)\n",
|
572 |
+
"y_test1 = scalerBack.fit_transform(y_test)\n"
|
573 |
+
]
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"cell_type": "code",
|
577 |
+
"execution_count": 107,
|
578 |
+
"metadata": {},
|
579 |
+
"outputs": [],
|
580 |
+
"source": [
|
581 |
+
"%matplotlib qt\n",
|
582 |
+
"\n",
|
583 |
+
"# Create a 3x3 grid of subplots\n",
|
584 |
+
"fig, axes = plt.subplots(3, 3, figsize=(10, 10))\n",
|
585 |
+
"\n",
|
586 |
+
"var = 1\n",
|
587 |
+
"# Loop over the value index\n",
|
588 |
+
"for i, ax in enumerate(axes.flat):\n",
|
589 |
+
" # Plot your data or perform any other operations\n",
|
590 |
+
" ax.plot(y_test1[var+i,0:time_step], label='Original Testing Data', color='blue')\n",
|
591 |
+
" ax.plot(test_predict2[var+i,0:time_step], label='Predicted Testing Data', color='red',alpha=0.8)\n",
|
592 |
+
" # ax.set_title(f'Plot {i+1}')\n",
|
593 |
+
" ax.set_title('Testing Data - Predicted vs Actual')\n",
|
594 |
+
" ax.set_xlabel('Time [hours]')\n",
|
595 |
+
" ax.set_ylabel('Energy Consumption [kW]') \n",
|
596 |
+
" ax.legend()\n",
|
597 |
+
"\n",
|
598 |
+
"# Adjust the spacing between subplots\n",
|
599 |
+
"plt.tight_layout()\n",
|
600 |
+
"\n",
|
601 |
+
"# Show the plot\n",
|
602 |
+
"plt.show()"
|
603 |
+
]
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"cell_type": "markdown",
|
607 |
+
"metadata": {},
|
608 |
+
"source": [
|
609 |
+
"### Model 3 predicting based on past Mondays"
|
610 |
+
]
|
611 |
+
},
|
612 |
+
{
|
613 |
+
"cell_type": "code",
|
614 |
+
"execution_count": 140,
|
615 |
+
"metadata": {},
|
616 |
+
"outputs": [
|
617 |
+
{
|
618 |
+
"name": "stdout",
|
619 |
+
"output_type": "stream",
|
620 |
+
"text": [
|
621 |
+
"Epoch 1/20\n",
|
622 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0888\n",
|
623 |
+
"Epoch 1: val_loss improved from inf to 0.02289, saving model to lstm_energy_01.keras\n",
|
624 |
+
"16/16 [==============================] - 7s 109ms/step - loss: 0.0888 - val_loss: 0.0229\n",
|
625 |
+
"Epoch 2/20\n",
|
626 |
+
"13/16 [=======================>......] - ETA: 0s - loss: 0.0288\n",
|
627 |
+
"Epoch 2: val_loss improved from 0.02289 to 0.01442, saving model to lstm_energy_01.keras\n",
|
628 |
+
"16/16 [==============================] - 0s 25ms/step - loss: 0.0276 - val_loss: 0.0144\n",
|
629 |
+
"Epoch 3/20\n",
|
630 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0197\n",
|
631 |
+
"Epoch 3: val_loss improved from 0.01442 to 0.01279, saving model to lstm_energy_01.keras\n",
|
632 |
+
"16/16 [==============================] - 0s 25ms/step - loss: 0.0197 - val_loss: 0.0128\n",
|
633 |
+
"Epoch 4/20\n",
|
634 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0186\n",
|
635 |
+
"Epoch 4: val_loss improved from 0.01279 to 0.01133, saving model to lstm_energy_01.keras\n",
|
636 |
+
"16/16 [==============================] - 0s 26ms/step - loss: 0.0186 - val_loss: 0.0113\n",
|
637 |
+
"Epoch 5/20\n",
|
638 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0183\n",
|
639 |
+
"Epoch 5: val_loss improved from 0.01133 to 0.01111, saving model to lstm_energy_01.keras\n",
|
640 |
+
"16/16 [==============================] - 0s 22ms/step - loss: 0.0183 - val_loss: 0.0111\n",
|
641 |
+
"Epoch 6/20\n",
|
642 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0183\n",
|
643 |
+
"Epoch 6: val_loss did not improve from 0.01111\n",
|
644 |
+
"16/16 [==============================] - 0s 24ms/step - loss: 0.0183 - val_loss: 0.0113\n",
|
645 |
+
"Epoch 7/20\n",
|
646 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0177\n",
|
647 |
+
"Epoch 7: val_loss did not improve from 0.01111\n",
|
648 |
+
"16/16 [==============================] - 0s 23ms/step - loss: 0.0177 - val_loss: 0.0112\n",
|
649 |
+
"Epoch 8/20\n",
|
650 |
+
"15/16 [===========================>..] - ETA: 0s - loss: 0.0176\n",
|
651 |
+
"Epoch 8: val_loss improved from 0.01111 to 0.01089, saving model to lstm_energy_01.keras\n",
|
652 |
+
"16/16 [==============================] - 0s 22ms/step - loss: 0.0177 - val_loss: 0.0109\n",
|
653 |
+
"Epoch 9/20\n",
|
654 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0170\n",
|
655 |
+
"Epoch 9: val_loss improved from 0.01089 to 0.01028, saving model to lstm_energy_01.keras\n",
|
656 |
+
"16/16 [==============================] - 0s 27ms/step - loss: 0.0170 - val_loss: 0.0103\n",
|
657 |
+
"Epoch 10/20\n",
|
658 |
+
"13/16 [=======================>......] - ETA: 0s - loss: 0.0164\n",
|
659 |
+
"Epoch 10: val_loss improved from 0.01028 to 0.00991, saving model to lstm_energy_01.keras\n",
|
660 |
+
"16/16 [==============================] - 0s 23ms/step - loss: 0.0164 - val_loss: 0.0099\n",
|
661 |
+
"Epoch 11/20\n",
|
662 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0162\n",
|
663 |
+
"Epoch 11: val_loss improved from 0.00991 to 0.00951, saving model to lstm_energy_01.keras\n",
|
664 |
+
"16/16 [==============================] - 0s 25ms/step - loss: 0.0162 - val_loss: 0.0095\n",
|
665 |
+
"Epoch 12/20\n",
|
666 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0156\n",
|
667 |
+
"Epoch 12: val_loss improved from 0.00951 to 0.00937, saving model to lstm_energy_01.keras\n",
|
668 |
+
"16/16 [==============================] - 0s 27ms/step - loss: 0.0156 - val_loss: 0.0094\n",
|
669 |
+
"Epoch 13/20\n",
|
670 |
+
"13/16 [=======================>......] - ETA: 0s - loss: 0.0151\n",
|
671 |
+
"Epoch 13: val_loss improved from 0.00937 to 0.00884, saving model to lstm_energy_01.keras\n",
|
672 |
+
"16/16 [==============================] - 0s 22ms/step - loss: 0.0151 - val_loss: 0.0088\n",
|
673 |
+
"Epoch 14/20\n",
|
674 |
+
"15/16 [===========================>..] - ETA: 0s - loss: 0.0151\n",
|
675 |
+
"Epoch 14: val_loss improved from 0.00884 to 0.00858, saving model to lstm_energy_01.keras\n",
|
676 |
+
"16/16 [==============================] - 0s 27ms/step - loss: 0.0150 - val_loss: 0.0086\n",
|
677 |
+
"Epoch 15/20\n",
|
678 |
+
"13/16 [=======================>......] - ETA: 0s - loss: 0.0140\n",
|
679 |
+
"Epoch 15: val_loss improved from 0.00858 to 0.00820, saving model to lstm_energy_01.keras\n",
|
680 |
+
"16/16 [==============================] - 0s 24ms/step - loss: 0.0141 - val_loss: 0.0082\n",
|
681 |
+
"Epoch 16/20\n",
|
682 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0138\n",
|
683 |
+
"Epoch 16: val_loss did not improve from 0.00820\n",
|
684 |
+
"16/16 [==============================] - 0s 22ms/step - loss: 0.0138 - val_loss: 0.0083\n",
|
685 |
+
"Epoch 17/20\n",
|
686 |
+
"15/16 [===========================>..] - ETA: 0s - loss: 0.0134\n",
|
687 |
+
"Epoch 17: val_loss improved from 0.00820 to 0.00776, saving model to lstm_energy_01.keras\n",
|
688 |
+
"16/16 [==============================] - 1s 34ms/step - loss: 0.0133 - val_loss: 0.0078\n",
|
689 |
+
"Epoch 18/20\n",
|
690 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0128\n",
|
691 |
+
"Epoch 18: val_loss improved from 0.00776 to 0.00728, saving model to lstm_energy_01.keras\n",
|
692 |
+
"16/16 [==============================] - 0s 27ms/step - loss: 0.0128 - val_loss: 0.0073\n",
|
693 |
+
"Epoch 19/20\n",
|
694 |
+
"16/16 [==============================] - ETA: 0s - loss: 0.0119\n",
|
695 |
+
"Epoch 19: val_loss improved from 0.00728 to 0.00668, saving model to lstm_energy_01.keras\n",
|
696 |
+
"16/16 [==============================] - 0s 27ms/step - loss: 0.0119 - val_loss: 0.0067\n",
|
697 |
+
"Epoch 20/20\n",
|
698 |
+
"13/16 [=======================>......] - ETA: 0s - loss: 0.0118\n",
|
699 |
+
"Epoch 20: val_loss improved from 0.00668 to 0.00635, saving model to lstm_energy_01.keras\n",
|
700 |
+
"16/16 [==============================] - 0s 23ms/step - loss: 0.0118 - val_loss: 0.0064\n"
|
701 |
+
]
|
702 |
+
},
|
703 |
+
{
|
704 |
+
"data": {
|
705 |
+
"text/plain": [
|
706 |
+
"<keras.callbacks.History at 0x1da6976bcd0>"
|
707 |
+
]
|
708 |
+
},
|
709 |
+
"execution_count": 140,
|
710 |
+
"metadata": {},
|
711 |
+
"output_type": "execute_result"
|
712 |
+
}
|
713 |
+
],
|
714 |
+
"source": [
|
715 |
+
"train,test = traindataset,testdataset\n",
|
716 |
+
"days_in_past = 3 # number of days to look back \n",
|
717 |
+
"time_step = 24 # define a day in hours\n",
|
718 |
+
"no_inputs = 2\n",
|
719 |
+
"no_outputs = 2\n",
|
720 |
+
"def create_dataset(dataset,time_step):\n",
|
721 |
+
" x = [[] for _ in range(no_inputs*days_in_past)] \n",
|
722 |
+
" Y = [[] for _ in range(no_outputs)]\n",
|
723 |
+
" for i in range(days_in_past*7, round(len(dataset)/time_step) - days_in_past): # -time_step is to ensure that the Y value has enough values\n",
|
724 |
+
" for k in range(no_inputs*days_in_past):\n",
|
725 |
+
" if k > 3:\n",
|
726 |
+
" j = 1\n",
|
727 |
+
" l = k - 4\n",
|
728 |
+
" x[k].append(dataset[(i-l*7)*time_step:(i-l*7+1)*time_step, j])\n",
|
729 |
+
" else:\n",
|
730 |
+
" j = 0\n",
|
731 |
+
" x[k].append(dataset[(i-k*7)*time_step:(i-k*7+1)*time_step, j])\n",
|
732 |
+
" \n",
|
733 |
+
" for j in range(no_outputs):\n",
|
734 |
+
" Y[j].append(dataset[i*time_step:(i+1)*time_step, j]) \n",
|
735 |
+
" x = [np.array(feature_list) for feature_list in x]\n",
|
736 |
+
" x = np.stack(x,axis=1)\n",
|
737 |
+
" Y = [np.array(feature_list) for feature_list in Y] \n",
|
738 |
+
" Y = np.stack(Y,axis=1)\n",
|
739 |
+
" Y = np.reshape(Y, (Y.shape[0], time_step*no_outputs))\n",
|
740 |
+
" return x, Y\n",
|
741 |
+
"\n",
|
742 |
+
"\n",
|
743 |
+
"X_train, y_train = create_dataset(train, time_step)\n",
|
744 |
+
"X_test, y_test = create_dataset(test, time_step)\n",
|
745 |
+
"\n",
|
746 |
+
"model3 = create_model(X_train, time_step, no_outputs)\n",
|
747 |
+
"checkpoint_path = \"lstm_energy_01.keras\"\n",
|
748 |
+
"checkpoint_callback = ModelCheckpoint(filepath=checkpoint_path, monitor='val_loss', verbose=1, save_best_only=True, mode='min')\n",
|
749 |
+
"model3.fit(X_train, y_train, validation_data=(X_test, y_test), epochs=20, batch_size=64, verbose=1, callbacks=[checkpoint_callback])"
|
750 |
+
]
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"cell_type": "code",
|
754 |
+
"execution_count": 142,
|
755 |
+
"metadata": {},
|
756 |
+
"outputs": [
|
757 |
+
{
|
758 |
+
"name": "stdout",
|
759 |
+
"output_type": "stream",
|
760 |
+
"text": [
|
761 |
+
"3/3 [==============================] - 0s 5ms/step - loss: 0.0064\n",
|
762 |
+
"3/3 [==============================] - 1s 4ms/step\n",
|
763 |
+
"Loss: 0.00635459553450346\n"
|
764 |
+
]
|
765 |
+
}
|
766 |
+
],
|
767 |
+
"source": [
|
768 |
+
"loss = model3.evaluate(X_test, y_test)\n",
|
769 |
+
"test_predict1 = model3.predict(X_test)\n",
|
770 |
+
"print(\"Loss: \", loss)\n",
|
771 |
+
"# Converting values back to the original scale\n",
|
772 |
+
"scalerBack = MinMaxScaler(feature_range=(mintest, maxtest))\n",
|
773 |
+
"test_predict2 = scalerBack.fit_transform(test_predict1)\n",
|
774 |
+
"y_test1 = scalerBack.fit_transform(y_test)\n"
|
775 |
+
]
|
776 |
+
},
|
777 |
+
{
|
778 |
+
"cell_type": "code",
|
779 |
+
"execution_count": 143,
|
780 |
+
"metadata": {},
|
781 |
+
"outputs": [],
|
782 |
+
"source": [
|
783 |
+
"%matplotlib qt\n",
|
784 |
+
"\n",
|
785 |
+
"# Create a 3x3 grid of subplots\n",
|
786 |
+
"fig, axes = plt.subplots(3, 3, figsize=(10, 10))\n",
|
787 |
+
"\n",
|
788 |
+
"var = 1\n",
|
789 |
+
"# Loop over the value index\n",
|
790 |
+
"for i, ax in enumerate(axes.flat):\n",
|
791 |
+
" # Plot your data or perform any other operations\n",
|
792 |
+
" ax.plot(y_test1[var+i,0:time_step], label='Original Testing Data', color='blue')\n",
|
793 |
+
" ax.plot(test_predict2[var+i,0:time_step], label='Predicted Testing Data', color='red',alpha=0.8)\n",
|
794 |
+
" # ax.set_title(f'Plot {i+1}')\n",
|
795 |
+
" ax.set_title('Testing Data - Predicted vs Actual')\n",
|
796 |
+
" ax.set_xlabel('Time [hours]')\n",
|
797 |
+
" ax.set_ylabel('Energy Consumption [kW]') \n",
|
798 |
+
" ax.legend()\n",
|
799 |
+
"\n",
|
800 |
+
"# Adjust the spacing between subplots\n",
|
801 |
+
"plt.tight_layout()\n",
|
802 |
+
"\n",
|
803 |
+
"# Show the plot\n",
|
804 |
+
"plt.show()"
|
805 |
+
]
|
806 |
+
},
|
807 |
+
{
|
808 |
+
"cell_type": "code",
|
809 |
+
"execution_count": null,
|
810 |
+
"metadata": {},
|
811 |
+
"outputs": [],
|
812 |
+
"source": []
|
813 |
+
},
|
814 |
+
{
|
815 |
+
"cell_type": "code",
|
816 |
+
"execution_count": null,
|
817 |
+
"metadata": {},
|
818 |
+
"outputs": [],
|
819 |
+
"source": []
|
820 |
+
}
|
821 |
+
],
|
822 |
+
"metadata": {
|
823 |
+
"kernelspec": {
|
824 |
+
"display_name": "experiments",
|
825 |
+
"language": "python",
|
826 |
+
"name": "python3"
|
827 |
+
},
|
828 |
+
"language_info": {
|
829 |
+
"codemirror_mode": {
|
830 |
+
"name": "ipython",
|
831 |
+
"version": 3
|
832 |
+
},
|
833 |
+
"file_extension": ".py",
|
834 |
+
"mimetype": "text/x-python",
|
835 |
+
"name": "python",
|
836 |
+
"nbconvert_exporter": "python",
|
837 |
+
"pygments_lexer": "ipython3",
|
838 |
+
"version": "3.8.15"
|
839 |
+
}
|
840 |
+
},
|
841 |
+
"nbformat": 4,
|
842 |
+
"nbformat_minor": 2
|
843 |
+
}
|