Spaces:
Sleeping
Sleeping
jerin
commited on
Commit
·
0c3f62c
1
Parent(s):
d0f2767
update rtu anomalizer2
Browse files- src/rtu/RTUAnomalizer1.py +26 -3
- src/rtu/RTUAnomalizer2.py +75 -19
src/rtu/RTUAnomalizer1.py
CHANGED
@@ -40,9 +40,12 @@ class RTUAnomalizer1:
|
|
40 |
prediction_model_path, clustering_model_paths, pca_model_paths
|
41 |
)
|
42 |
|
43 |
-
self.actual_list, self.pred_list, self.resid_list, self.resid_pca_list = (
|
44 |
self.initialize_lists()
|
45 |
)
|
|
|
|
|
|
|
46 |
|
47 |
def initialize_lists(self, size=30):
|
48 |
"""
|
@@ -56,11 +59,13 @@ class RTUAnomalizer1:
|
|
56 |
"""
|
57 |
initial_values = [[0] * self.num_outputs] * size
|
58 |
initial_values1 = [[0] * 4] * size
|
|
|
59 |
return (
|
60 |
initial_values.copy(),
|
61 |
initial_values.copy(),
|
62 |
initial_values.copy(),
|
63 |
initial_values1.copy(),
|
|
|
64 |
)
|
65 |
|
66 |
def load_models(
|
@@ -192,11 +197,24 @@ class RTUAnomalizer1:
|
|
192 |
axis=1,
|
193 |
)
|
194 |
)
|
|
|
|
|
195 |
resid_pcas = np.array(resid_pcas).flatten().tolist()
|
196 |
self.resid_pca_list.pop(0)
|
197 |
self.resid_pca_list.append(resid_pcas)
|
198 |
|
199 |
return np.array(dist)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
|
201 |
def pipeline(self, df_new, df_trans, scaler):
|
202 |
"""
|
@@ -217,12 +235,17 @@ class RTUAnomalizer1:
|
|
217 |
actual, pred = self.inverse_transform(scaler, pred, df_trans)
|
218 |
actual_list, pred_list, resid_list = self.update_lists(actual, pred, resid)
|
219 |
dist = self.calculate_distances(resid)
|
220 |
-
|
221 |
return (
|
222 |
actual_list,
|
223 |
pred_list,
|
224 |
resid_list,
|
225 |
self.resid_pca_list,
|
226 |
dist,
|
227 |
-
|
|
|
|
|
|
|
228 |
)
|
|
|
|
|
|
40 |
prediction_model_path, clustering_model_paths, pca_model_paths
|
41 |
)
|
42 |
|
43 |
+
self.actual_list, self.pred_list, self.resid_list, self.resid_pca_list, self.distance_list = (
|
44 |
self.initialize_lists()
|
45 |
)
|
46 |
+
|
47 |
+
self.fault_1 = None
|
48 |
+
self.fault_2 = None
|
49 |
|
50 |
def initialize_lists(self, size=30):
|
51 |
"""
|
|
|
59 |
"""
|
60 |
initial_values = [[0] * self.num_outputs] * size
|
61 |
initial_values1 = [[0] * 4] * size
|
62 |
+
initial_values2 = [[0] * 2] * size*2
|
63 |
return (
|
64 |
initial_values.copy(),
|
65 |
initial_values.copy(),
|
66 |
initial_values.copy(),
|
67 |
initial_values1.copy(),
|
68 |
+
initial_values2.copy(),
|
69 |
)
|
70 |
|
71 |
def load_models(
|
|
|
197 |
axis=1,
|
198 |
)
|
199 |
)
|
200 |
+
self.distance_list.pop(0)
|
201 |
+
self.distance_list.append(dist)
|
202 |
resid_pcas = np.array(resid_pcas).flatten().tolist()
|
203 |
self.resid_pca_list.pop(0)
|
204 |
self.resid_pca_list.append(resid_pcas)
|
205 |
|
206 |
return np.array(dist)
|
207 |
+
def fault_windowing(self):
|
208 |
+
rtu_1_dist = np.array(self.distance_list).T[0]>1 #rtu_1_threshold
|
209 |
+
if sum(rtu_1_dist)>80*60: # 80% of the 60 min window
|
210 |
+
self.fault_1 = 1
|
211 |
+
else:
|
212 |
+
self.fault_1 = 0
|
213 |
+
rtu_2_dist = np.array(self.distance_list).T[1]>2.5 #rtu_2_threshold
|
214 |
+
if sum(rtu_2_dist)>80*60: # 80% of the 60 min window
|
215 |
+
self.fault_2 = 1
|
216 |
+
else:
|
217 |
+
self.fault_2 = 0
|
218 |
|
219 |
def pipeline(self, df_new, df_trans, scaler):
|
220 |
"""
|
|
|
235 |
actual, pred = self.inverse_transform(scaler, pred, df_trans)
|
236 |
actual_list, pred_list, resid_list = self.update_lists(actual, pred, resid)
|
237 |
dist = self.calculate_distances(resid)
|
238 |
+
|
239 |
return (
|
240 |
actual_list,
|
241 |
pred_list,
|
242 |
resid_list,
|
243 |
self.resid_pca_list,
|
244 |
dist,
|
245 |
+
np.array(self.distance_list[30:]).T[0]>1, #rtu_1_threshold
|
246 |
+
np.array(self.distance_list[30:]).T[1]>2.5, #rtu_2_threshold
|
247 |
+
self.fault_1,
|
248 |
+
self.fault_2
|
249 |
)
|
250 |
+
|
251 |
+
|
src/rtu/RTUAnomalizer2.py
CHANGED
@@ -3,15 +3,11 @@ from tensorflow.keras.models import load_model
|
|
3 |
import joblib
|
4 |
|
5 |
|
6 |
-
class
|
7 |
"""
|
8 |
Class for performing anomaly detection on RTU (Roof Top Unit) data.
|
9 |
"""
|
10 |
|
11 |
-
model = None
|
12 |
-
kmeans_models = []
|
13 |
-
pca_models = []
|
14 |
-
|
15 |
def __init__(
|
16 |
self,
|
17 |
prediction_model_path=None,
|
@@ -29,12 +25,27 @@ class RTUAnomalizer2:
|
|
29 |
num_inputs (int): Number of input features.
|
30 |
num_outputs (int): Number of output features.
|
31 |
"""
|
|
|
|
|
|
|
|
|
32 |
self.num_inputs = num_inputs
|
33 |
self.num_outputs = num_outputs
|
34 |
-
if
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
def initialize_lists(self, size=30):
|
40 |
"""
|
@@ -46,10 +57,20 @@ class RTUAnomalizer2:
|
|
46 |
Returns:
|
47 |
tuple: A tuple containing three lists initialized with zeros.
|
48 |
"""
|
49 |
-
initial_values = [[0]*self.num_outputs] * size
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
def load_models(
|
|
|
|
|
53 |
"""
|
54 |
Load the prediction and clustering models.
|
55 |
|
@@ -61,7 +82,7 @@ class RTUAnomalizer2:
|
|
61 |
|
62 |
for path in clustering_model_paths:
|
63 |
self.kmeans_models.append(joblib.load(path))
|
64 |
-
|
65 |
for path in pca_model_paths:
|
66 |
self.pca_models.append(joblib.load(path))
|
67 |
|
@@ -75,7 +96,7 @@ class RTUAnomalizer2:
|
|
75 |
Returns:
|
76 |
array: Predicted values.
|
77 |
"""
|
78 |
-
return self.model.predict(df_new,verbose=0)
|
79 |
|
80 |
def calculate_residuals(self, df_trans, pred):
|
81 |
"""
|
@@ -161,16 +182,39 @@ class RTUAnomalizer2:
|
|
161 |
array: Array of distances.
|
162 |
"""
|
163 |
dist = []
|
|
|
164 |
for i, model in enumerate(self.kmeans_models):
|
|
|
|
|
|
|
|
|
|
|
|
|
165 |
dist.append(
|
166 |
np.linalg.norm(
|
167 |
-
|
168 |
ord=2,
|
169 |
axis=1,
|
170 |
)
|
171 |
)
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
return np.array(dist)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
174 |
|
175 |
def pipeline(self, df_new, df_trans, scaler):
|
176 |
"""
|
@@ -184,12 +228,24 @@ class RTUAnomalizer2:
|
|
184 |
Returns:
|
185 |
tuple: A tuple containing the lists of actual, predicted, and residual values, and the distances.
|
186 |
"""
|
187 |
-
|
188 |
pred = self.predict(df_new)
|
189 |
actual, resid = self.calculate_residuals(df_trans, pred)
|
190 |
pred = self.resize_prediction(pred, df_trans)
|
191 |
actual, pred = self.inverse_transform(scaler, pred, df_trans)
|
192 |
-
actual_list, pred_list, resid_list = self.update_lists(
|
193 |
-
actual, pred, resid)
|
194 |
dist = self.calculate_distances(resid)
|
195 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
import joblib
|
4 |
|
5 |
|
6 |
+
class RTUAnomalizer1:
|
7 |
"""
|
8 |
Class for performing anomaly detection on RTU (Roof Top Unit) data.
|
9 |
"""
|
10 |
|
|
|
|
|
|
|
|
|
11 |
def __init__(
|
12 |
self,
|
13 |
prediction_model_path=None,
|
|
|
25 |
num_inputs (int): Number of input features.
|
26 |
num_outputs (int): Number of output features.
|
27 |
"""
|
28 |
+
self.model = None
|
29 |
+
self.kmeans_models = []
|
30 |
+
self.pca_models = []
|
31 |
+
|
32 |
self.num_inputs = num_inputs
|
33 |
self.num_outputs = num_outputs
|
34 |
+
if (
|
35 |
+
prediction_model_path is not None
|
36 |
+
and clustering_model_paths is not None
|
37 |
+
and pca_model_paths is not None
|
38 |
+
):
|
39 |
+
self.load_models(
|
40 |
+
prediction_model_path, clustering_model_paths, pca_model_paths
|
41 |
+
)
|
42 |
+
|
43 |
+
self.actual_list, self.pred_list, self.resid_list, self.resid_pca_list, self.distance_list = (
|
44 |
+
self.initialize_lists()
|
45 |
+
)
|
46 |
+
|
47 |
+
self.fault_1 = None
|
48 |
+
self.fault_2 = None
|
49 |
|
50 |
def initialize_lists(self, size=30):
|
51 |
"""
|
|
|
57 |
Returns:
|
58 |
tuple: A tuple containing three lists initialized with zeros.
|
59 |
"""
|
60 |
+
initial_values = [[0] * self.num_outputs] * size
|
61 |
+
initial_values1 = [[0] * 4] * size
|
62 |
+
initial_values2 = [[0] * 2] * size*2
|
63 |
+
return (
|
64 |
+
initial_values.copy(),
|
65 |
+
initial_values.copy(),
|
66 |
+
initial_values.copy(),
|
67 |
+
initial_values1.copy(),
|
68 |
+
initial_values2.copy(),
|
69 |
+
)
|
70 |
|
71 |
+
def load_models(
|
72 |
+
self, prediction_model_path, clustering_model_paths, pca_model_paths
|
73 |
+
):
|
74 |
"""
|
75 |
Load the prediction and clustering models.
|
76 |
|
|
|
82 |
|
83 |
for path in clustering_model_paths:
|
84 |
self.kmeans_models.append(joblib.load(path))
|
85 |
+
|
86 |
for path in pca_model_paths:
|
87 |
self.pca_models.append(joblib.load(path))
|
88 |
|
|
|
96 |
Returns:
|
97 |
array: Predicted values.
|
98 |
"""
|
99 |
+
return self.model.predict(df_new, verbose=0)
|
100 |
|
101 |
def calculate_residuals(self, df_trans, pred):
|
102 |
"""
|
|
|
182 |
array: Array of distances.
|
183 |
"""
|
184 |
dist = []
|
185 |
+
resid_pcas = []
|
186 |
for i, model in enumerate(self.kmeans_models):
|
187 |
+
resid_pca = self.pca_models[i].transform(
|
188 |
+
resid[:, (i * 7) + 1 : (i * 7) + 8]
|
189 |
+
)
|
190 |
+
|
191 |
+
resid_pcas = resid_pcas + resid_pca.tolist()
|
192 |
+
|
193 |
dist.append(
|
194 |
np.linalg.norm(
|
195 |
+
resid_pca - model.cluster_centers_[0],
|
196 |
ord=2,
|
197 |
axis=1,
|
198 |
)
|
199 |
)
|
200 |
+
self.distance_list.pop(0)
|
201 |
+
self.distance_list.append(dist)
|
202 |
+
resid_pcas = np.array(resid_pcas).flatten().tolist()
|
203 |
+
self.resid_pca_list.pop(0)
|
204 |
+
self.resid_pca_list.append(resid_pcas)
|
205 |
|
206 |
return np.array(dist)
|
207 |
+
def fault_windowing(self):
|
208 |
+
rtu_1_dist = np.array(self.distance_list).T[0]>1.5 #rtu_3_threshold
|
209 |
+
if sum(rtu_1_dist)>80*60: # 80% of the 60 min window
|
210 |
+
self.fault_1 = 1
|
211 |
+
else:
|
212 |
+
self.fault_1 = 0
|
213 |
+
rtu_2_dist = np.array(self.distance_list).T[1]>1.5 #rtu_4_threshold
|
214 |
+
if sum(rtu_2_dist)>80*60: # 80% of the 60 min window
|
215 |
+
self.fault_2 = 1
|
216 |
+
else:
|
217 |
+
self.fault_2 = 0
|
218 |
|
219 |
def pipeline(self, df_new, df_trans, scaler):
|
220 |
"""
|
|
|
228 |
Returns:
|
229 |
tuple: A tuple containing the lists of actual, predicted, and residual values, and the distances.
|
230 |
"""
|
231 |
+
|
232 |
pred = self.predict(df_new)
|
233 |
actual, resid = self.calculate_residuals(df_trans, pred)
|
234 |
pred = self.resize_prediction(pred, df_trans)
|
235 |
actual, pred = self.inverse_transform(scaler, pred, df_trans)
|
236 |
+
actual_list, pred_list, resid_list = self.update_lists(actual, pred, resid)
|
|
|
237 |
dist = self.calculate_distances(resid)
|
238 |
+
|
239 |
+
return (
|
240 |
+
actual_list,
|
241 |
+
pred_list,
|
242 |
+
resid_list,
|
243 |
+
self.resid_pca_list,
|
244 |
+
dist,
|
245 |
+
np.array(self.distance_list[30:]).T[0]>1.5, #rtu_3_threshold
|
246 |
+
np.array(self.distance_list[30:]).T[1]>1.5, #rtu_4_threshold
|
247 |
+
self.fault_1,
|
248 |
+
self.fault_2
|
249 |
+
)
|
250 |
+
|
251 |
+
|