smart-buildings / src /rtu /RTUAnomalizer.py
akshayballal's picture
main works
4a389dc
raw
history blame
2.99 kB
import numpy as np
from tensorflow.keras.models import load_model
import joblib
class RTUAnomalizer:
model = None
kmeans_models = []
def __init__(
self,
prediction_model_path=None,
clustering_model_paths=None,
num_inputs=None,
num_outputs=None,
):
self.num_inputs = num_inputs
self.num_outputs = num_outputs
if not prediction_model_path is None and not clustering_model_paths is None:
self.load_models(prediction_model_path, clustering_model_paths)
def initialize_lists(self, size=30):
initial_values = [0] * size
return initial_values.copy(), initial_values.copy(), initial_values.copy()
def load_models(self, prediction_model_path, clustering_model_paths):
self.model = load_model(prediction_model_path)
for path in clustering_model_paths:
self.kmeans_models.append(joblib.load(path))
def predict(self, df_new):
return self.model.predict(df_new)
def calculate_residuals(self, df_trans, pred):
actual = df_trans[30, : self.num_outputs]
resid = actual - pred
return actual, resid
def resize_prediction(self, pred, df_trans):
pred = np.resize(
pred, (pred.shape[0], pred.shape[1] + len(df_trans[30, self.num_outputs :]))
)
pred[:, -len(df_trans[30, self.num_outputs :]) :] = df_trans[
30, self.num_outputs :
]
return pred
def inverse_transform(self, scaler, pred, df_trans):
pred = scaler.inverse_transform(np.array(pred))
actual = scaler.inverse_transform(np.array([df_trans[30, :]]))
return actual, pred
def update_lists(self, actual_list, pred_list, resid_list, actual, pred, resid):
actual_list.pop(0)
pred_list.pop(0)
resid_list.pop(0)
actual_list.append(actual[0, 1])
pred_list.append(pred[0, 1])
resid_list.append(resid[0, 1])
return actual_list, pred_list, resid_list
def calculate_distances(self, resid):
dist = []
for i, model in enumerate(self.kmeans_models):
dist.append(
np.linalg.norm(
resid[:, (i * 7) + 1 : (i * 7) + 8] - model.cluster_centers_[0],
ord=2,
axis=1,
)
)
return np.array(dist)
def pipeline(self, df_new, df_trans, scaler):
actual_list, pred_list, resid_list = self.initialize_lists()
pred = self.predict(df_new)
actual, resid = self.calculate_residuals(df_trans, pred)
pred = self.resize_prediction(pred, df_trans)
actual, pred = self.inverse_transform(scaler, pred, df_trans)
actual_list, pred_list, resid_list = self.update_lists(
actual_list, pred_list, resid_list, actual, pred, resid
)
dist = self.calculate_distances(resid)
return actual_list, pred_list, resid_list, dist