Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import time | |
import librosa | |
import soundfile | |
import nemo.collections.asr as nemo_asr | |
import tempfile | |
import os | |
import uuid | |
SAMPLE_RATE = 16000 | |
model = nemo_asr.models.EncDecRNNTBPEModel.from_pretrained("nvidia/stt_en_conformer_transducer_xlarge") | |
model.change_decoding_strategy(None) | |
model.eval() | |
def process_audio_file(file): | |
data, sr = librosa.load(file) | |
if sr != SAMPLE_RATE: | |
data = librosa.resample(data, orig_sr=sr, target_sr=SAMPLE_RATE) | |
# monochannel | |
data = librosa.to_mono(data) | |
return data | |
def transcribe(audio, state=""): | |
# Grant additional context | |
# time.sleep(1) | |
if state is None: | |
state = "" | |
audio_data = process_audio_file(audio) | |
with tempfile.TemporaryDirectory() as tmpdir: | |
# Filepath transcribe | |
audio_path = os.path.join(tmpdir, f'audio_{uuid.uuid4()}.wav') | |
soundfile.write(audio_path, audio_data, SAMPLE_RATE) | |
transcriptions = model.transcribe([audio_path]) | |
# Direct transcribe | |
# transcriptions = model.transcribe([audio]) | |
# if transcriptions form a tuple (from RNNT), extract just "best" hypothesis | |
if type(transcriptions) == tuple and len(transcriptions) == 2: | |
transcriptions = transcriptions[0] | |
transcriptions = transcriptions[0] | |
state = state + transcriptions + " " | |
return state, state | |
iface = gr.Interface( | |
fn=transcribe, | |
inputs=[ | |
gr.Audio(source="microphone", type='filepath', streaming=True), | |
"state", | |
], | |
outputs=[ | |
"textbox", | |
"state", | |
], | |
layout="horizontal", | |
theme="huggingface", | |
title="NeMo Streaming Conformer Transducer Large - English", | |
description="Demo for English speech recognition using Conformer Transducers", | |
allow_flagging='never', | |
live=True, | |
) | |
iface.launch() | |