|
import gradio as gr |
|
from transformers import pipeline |
|
import torch |
|
|
|
|
|
pipe = pipeline("text-generation", model="cognitivecomputations/dolphin-2.9.4-llama3.1-8b", torch_dtype=torch.float16) |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
|
|
conversation_history = system_message + "\n" |
|
for user_message, assistant_message in history: |
|
if user_message: |
|
conversation_history += f"User: {user_message}\n" |
|
if assistant_message: |
|
conversation_history += f"Assistant: {assistant_message}\n" |
|
conversation_history += f"User: {message}\n" |
|
|
|
|
|
response = "" |
|
result = pipe( |
|
conversation_history, |
|
max_length=max_tokens, |
|
do_sample=True, |
|
temperature=temperature, |
|
top_p=top_p |
|
)[0]["generated_text"] |
|
|
|
|
|
new_response = result.split(conversation_history)[-1].strip() |
|
for token in new_response: |
|
response += token |
|
yield response |
|
|
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |