Spaces:
Runtime error
Runtime error
cointegrated
commited on
Commit
•
f44876d
1
Parent(s):
4d80410
the first commit
Browse files- .gitignore +1 -0
- README.md +5 -5
- app.py +55 -0
- requirements.txt +7 -0
- translation.py +184 -0
.gitignore
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
.idea
|
README.md
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
---
|
2 |
-
title: Nllb Rus
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
|
|
1 |
---
|
2 |
+
title: Nllb Rus Tyv V1 Demo
|
3 |
+
emoji: 🚀
|
4 |
+
colorFrom: blue
|
5 |
+
colorTo: gray
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.46.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
---
|
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
|
4 |
+
from translation import Translator, LANGUAGES
|
5 |
+
LANGUAGES_LIST = list(LANGUAGES.keys())
|
6 |
+
|
7 |
+
|
8 |
+
def translate_wrapper(text, src, trg, by_sentence=True, preprocess=True, random=False, num_beams=4):
|
9 |
+
src_lang = LANGUAGES.get(src)
|
10 |
+
tgt_lang = LANGUAGES.get(trg)
|
11 |
+
# if src == trg:
|
12 |
+
# return 'Please choose two different languages'
|
13 |
+
result = translator.translate(
|
14 |
+
text=text,
|
15 |
+
src_lang=src_lang,
|
16 |
+
tgt_lang=tgt_lang,
|
17 |
+
do_sample=random,
|
18 |
+
num_beams=int(num_beams),
|
19 |
+
by_sentence=by_sentence,
|
20 |
+
preprocess=preprocess,
|
21 |
+
)
|
22 |
+
return result
|
23 |
+
|
24 |
+
|
25 |
+
article = """
|
26 |
+
This is a NLLB-200-600M model fine-tuned for translation between Russian and Tyvan (Tuvan) languages,
|
27 |
+
using the data from https://tyvan.ru/.
|
28 |
+
|
29 |
+
This model is described in https://cointegrated.medium.com/a37fc706b865.
|
30 |
+
|
31 |
+
If you want to host in on your own backend, consider running this dockerized app: https://github.com/slone-nlp/nllb-docker-demo.
|
32 |
+
"""
|
33 |
+
|
34 |
+
|
35 |
+
interface = gr.Interface(
|
36 |
+
translate_wrapper,
|
37 |
+
[
|
38 |
+
gr.Textbox(label="Text", lines=2, placeholder='text to translate '),
|
39 |
+
gr.Dropdown(LANGUAGES_LIST, type="value", label='source language', value=LANGUAGES_LIST[0]),
|
40 |
+
gr.Dropdown(LANGUAGES_LIST, type="value", label='target language', value=LANGUAGES_LIST[1]),
|
41 |
+
gr.Checkbox(label="by sentence", value=True),
|
42 |
+
gr.Checkbox(label="text preprocesing", value=True),
|
43 |
+
gr.Checkbox(label="randomize", value=False),
|
44 |
+
gr.Dropdown([1, 2, 3, 4, 5], label="number of beams", value=4),
|
45 |
+
],
|
46 |
+
"text",
|
47 |
+
title='Tyvan-Russian translaton',
|
48 |
+
article=article,
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
if __name__ == '__main__':
|
53 |
+
translator = Translator()
|
54 |
+
|
55 |
+
interface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers==4.33
|
2 |
+
sentencepiece
|
3 |
+
gradio>=3.18.0
|
4 |
+
torch
|
5 |
+
sentence-splitter==1.4
|
6 |
+
sacremoses==0.0.45
|
7 |
+
accelerate==0.23
|
translation.py
ADDED
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import sys
|
3 |
+
import typing as tp
|
4 |
+
import unicodedata
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from sacremoses import MosesPunctNormalizer
|
8 |
+
from sentence_splitter import SentenceSplitter
|
9 |
+
from transformers import AutoModelForSeq2SeqLM, NllbTokenizer
|
10 |
+
|
11 |
+
MODEL_URL = "slone/nllb-rus-myv-v1-extvoc"
|
12 |
+
LANGUAGES = {
|
13 |
+
"Рузонь | Русский | Russian": "rus_Cyrl",
|
14 |
+
"Эрзянь | Эрзянский | Erzya": "myv_Cyrl",
|
15 |
+
}
|
16 |
+
L1 = "rus_Cyrl"
|
17 |
+
L2 = "myv_Cyrl"
|
18 |
+
|
19 |
+
|
20 |
+
def get_non_printing_char_replacer(replace_by: str = " ") -> tp.Callable[[str], str]:
|
21 |
+
non_printable_map = {
|
22 |
+
ord(c): replace_by
|
23 |
+
for c in (chr(i) for i in range(sys.maxunicode + 1))
|
24 |
+
# same as \p{C} in perl
|
25 |
+
# see https://www.unicode.org/reports/tr44/#General_Category_Values
|
26 |
+
if unicodedata.category(c) in {"C", "Cc", "Cf", "Cs", "Co", "Cn"}
|
27 |
+
}
|
28 |
+
|
29 |
+
def replace_non_printing_char(line) -> str:
|
30 |
+
return line.translate(non_printable_map)
|
31 |
+
|
32 |
+
return replace_non_printing_char
|
33 |
+
|
34 |
+
|
35 |
+
class TextPreprocessor:
|
36 |
+
"""
|
37 |
+
Mimic the text preprocessing made for the NLLB model.
|
38 |
+
This code is adapted from the Stopes repo of the NLLB team:
|
39 |
+
https://github.com/facebookresearch/stopes/blob/main/stopes/pipelines/monolingual/monolingual_line_processor.py#L214
|
40 |
+
"""
|
41 |
+
|
42 |
+
def __init__(self, lang="en"):
|
43 |
+
self.mpn = MosesPunctNormalizer(lang=lang)
|
44 |
+
self.mpn.substitutions = [
|
45 |
+
(re.compile(r), sub) for r, sub in self.mpn.substitutions
|
46 |
+
]
|
47 |
+
self.replace_nonprint = get_non_printing_char_replacer(" ")
|
48 |
+
|
49 |
+
def __call__(self, text: str) -> str:
|
50 |
+
clean = self.mpn.normalize(text)
|
51 |
+
clean = self.replace_nonprint(clean)
|
52 |
+
# replace 𝓕𝔯𝔞𝔫𝔠𝔢𝔰𝔠𝔞 by Francesca
|
53 |
+
clean = unicodedata.normalize("NFKC", clean)
|
54 |
+
return clean
|
55 |
+
|
56 |
+
|
57 |
+
def fix_tokenizer(tokenizer, new_lang=L2):
|
58 |
+
"""Add a new language token to the tokenizer vocabulary
|
59 |
+
(this should be done each time after its initialization)
|
60 |
+
"""
|
61 |
+
old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder)
|
62 |
+
tokenizer.lang_code_to_id[new_lang] = old_len - 1
|
63 |
+
tokenizer.id_to_lang_code[old_len - 1] = new_lang
|
64 |
+
# always move "mask" to the last position
|
65 |
+
tokenizer.fairseq_tokens_to_ids["<mask>"] = (
|
66 |
+
len(tokenizer.sp_model)
|
67 |
+
+ len(tokenizer.lang_code_to_id)
|
68 |
+
+ tokenizer.fairseq_offset
|
69 |
+
)
|
70 |
+
|
71 |
+
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
|
72 |
+
tokenizer.fairseq_ids_to_tokens = {
|
73 |
+
v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()
|
74 |
+
}
|
75 |
+
if new_lang not in tokenizer._additional_special_tokens:
|
76 |
+
tokenizer._additional_special_tokens.append(new_lang)
|
77 |
+
# clear the added token encoder; otherwise a new token may end up there by mistake
|
78 |
+
tokenizer.added_tokens_encoder = {}
|
79 |
+
tokenizer.added_tokens_decoder = {}
|
80 |
+
|
81 |
+
|
82 |
+
def sentenize_with_fillers(text, splitter, fix_double_space=True, ignore_errors=False):
|
83 |
+
"""Apply a sentence splitter and return the sentences and all separators before and after them"""
|
84 |
+
if fix_double_space:
|
85 |
+
text = re.sub(" +", " ", text)
|
86 |
+
sentences = splitter.split(text)
|
87 |
+
fillers = []
|
88 |
+
i = 0
|
89 |
+
for sentence in sentences:
|
90 |
+
start_idx = text.find(sentence, i)
|
91 |
+
if ignore_errors and start_idx == -1:
|
92 |
+
# print(f"sent not found after {i}: `{sentence}`")
|
93 |
+
start_idx = i + 1
|
94 |
+
assert start_idx != -1, f"sent not found after {i}: `{sentence}`"
|
95 |
+
fillers.append(text[i:start_idx])
|
96 |
+
i = start_idx + len(sentence)
|
97 |
+
fillers.append(text[i:])
|
98 |
+
return sentences, fillers
|
99 |
+
|
100 |
+
|
101 |
+
class Translator:
|
102 |
+
def __init__(self):
|
103 |
+
self.model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_URL, low_cpu_mem_usage=False, load_in_8bit=True)
|
104 |
+
if torch.cuda.is_available():
|
105 |
+
self.model.cuda()
|
106 |
+
self.tokenizer = NllbTokenizer.from_pretrained(MODEL_URL)
|
107 |
+
fix_tokenizer(self.tokenizer)
|
108 |
+
|
109 |
+
self.splitter = SentenceSplitter("ru")
|
110 |
+
self.preprocessor = TextPreprocessor()
|
111 |
+
|
112 |
+
self.languages = LANGUAGES
|
113 |
+
|
114 |
+
def translate(
|
115 |
+
self,
|
116 |
+
text,
|
117 |
+
src_lang=L1,
|
118 |
+
tgt_lang=L2,
|
119 |
+
max_length="auto",
|
120 |
+
num_beams=4,
|
121 |
+
by_sentence=True,
|
122 |
+
preprocess=True,
|
123 |
+
**kwargs,
|
124 |
+
):
|
125 |
+
"""Translate a text sentence by sentence, preserving the fillers around the sentences."""
|
126 |
+
if by_sentence:
|
127 |
+
sents, fillers = sentenize_with_fillers(
|
128 |
+
text, splitter=self.splitter, ignore_errors=True
|
129 |
+
)
|
130 |
+
else:
|
131 |
+
sents = [text]
|
132 |
+
fillers = ["", ""]
|
133 |
+
if preprocess:
|
134 |
+
sents = [self.preprocessor(sent) for sent in sents]
|
135 |
+
results = []
|
136 |
+
for sent, sep in zip(sents, fillers):
|
137 |
+
results.append(sep)
|
138 |
+
results.append(
|
139 |
+
self.translate_single(
|
140 |
+
sent,
|
141 |
+
src_lang=src_lang,
|
142 |
+
tgt_lang=tgt_lang,
|
143 |
+
max_length=max_length,
|
144 |
+
num_beams=num_beams,
|
145 |
+
**kwargs,
|
146 |
+
)
|
147 |
+
)
|
148 |
+
results.append(fillers[-1])
|
149 |
+
return "".join(results)
|
150 |
+
|
151 |
+
def translate_single(
|
152 |
+
self,
|
153 |
+
text,
|
154 |
+
src_lang=L1,
|
155 |
+
tgt_lang=L2,
|
156 |
+
max_length="auto",
|
157 |
+
num_beams=4,
|
158 |
+
n_out=None,
|
159 |
+
**kwargs,
|
160 |
+
):
|
161 |
+
self.tokenizer.src_lang = src_lang
|
162 |
+
encoded = self.tokenizer(
|
163 |
+
text, return_tensors="pt", truncation=True, max_length=512
|
164 |
+
)
|
165 |
+
if max_length == "auto":
|
166 |
+
max_length = int(32 + 2.0 * encoded.input_ids.shape[1])
|
167 |
+
generated_tokens = self.model.generate(
|
168 |
+
**encoded.to(self.model.device),
|
169 |
+
forced_bos_token_id=self.tokenizer.lang_code_to_id[tgt_lang],
|
170 |
+
max_length=max_length,
|
171 |
+
num_beams=num_beams,
|
172 |
+
num_return_sequences=n_out or 1,
|
173 |
+
**kwargs,
|
174 |
+
)
|
175 |
+
out = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
|
176 |
+
if isinstance(text, str) and n_out is None:
|
177 |
+
return out[0]
|
178 |
+
return out
|
179 |
+
|
180 |
+
|
181 |
+
if __name__ == "__main__":
|
182 |
+
print("Initializing a translator to pre-download models...")
|
183 |
+
translator = Translator()
|
184 |
+
print("Initialization successful!")
|