Spaces:
Runtime error
Runtime error
import re | |
import sys | |
import typing as tp | |
import unicodedata | |
import torch | |
from sacremoses import MosesPunctNormalizer | |
from sentence_splitter import SentenceSplitter | |
from transformers import AutoModelForSeq2SeqLM, NllbTokenizer | |
MODEL_URL = "slone/nllb-rus-myv-v1-extvoc" | |
LANGUAGES = { | |
"ะ ัะทะพะฝั | ะ ัััะบะธะน | Russian": "rus_Cyrl", | |
"ะญัะทัะฝั | ะญัะทัะฝัะบะธะน | Erzya": "myv_Cyrl", | |
} | |
L1 = "rus_Cyrl" | |
L2 = "myv_Cyrl" | |
def get_non_printing_char_replacer(replace_by: str = " ") -> tp.Callable[[str], str]: | |
non_printable_map = { | |
ord(c): replace_by | |
for c in (chr(i) for i in range(sys.maxunicode + 1)) | |
# same as \p{C} in perl | |
# see https://www.unicode.org/reports/tr44/#General_Category_Values | |
if unicodedata.category(c) in {"C", "Cc", "Cf", "Cs", "Co", "Cn"} | |
} | |
def replace_non_printing_char(line) -> str: | |
return line.translate(non_printable_map) | |
return replace_non_printing_char | |
class TextPreprocessor: | |
""" | |
Mimic the text preprocessing made for the NLLB model. | |
This code is adapted from the Stopes repo of the NLLB team: | |
https://github.com/facebookresearch/stopes/blob/main/stopes/pipelines/monolingual/monolingual_line_processor.py#L214 | |
""" | |
def __init__(self, lang="en"): | |
self.mpn = MosesPunctNormalizer(lang=lang) | |
self.mpn.substitutions = [ | |
(re.compile(r), sub) for r, sub in self.mpn.substitutions | |
] | |
self.replace_nonprint = get_non_printing_char_replacer(" ") | |
def __call__(self, text: str) -> str: | |
clean = self.mpn.normalize(text) | |
clean = self.replace_nonprint(clean) | |
# replace ๐๐ฏ๐๐ซ๐ ๐ข๐ฐ๐ ๐ by Francesca | |
clean = unicodedata.normalize("NFKC", clean) | |
return clean | |
def fix_tokenizer(tokenizer, new_lang=L2): | |
"""Add a new language token to the tokenizer vocabulary | |
(this should be done each time after its initialization) | |
""" | |
old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder) | |
tokenizer.lang_code_to_id[new_lang] = old_len - 1 | |
tokenizer.id_to_lang_code[old_len - 1] = new_lang | |
# always move "mask" to the last position | |
tokenizer.fairseq_tokens_to_ids["<mask>"] = ( | |
len(tokenizer.sp_model) | |
+ len(tokenizer.lang_code_to_id) | |
+ tokenizer.fairseq_offset | |
) | |
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id) | |
tokenizer.fairseq_ids_to_tokens = { | |
v: k for k, v in tokenizer.fairseq_tokens_to_ids.items() | |
} | |
if new_lang not in tokenizer._additional_special_tokens: | |
tokenizer._additional_special_tokens.append(new_lang) | |
# clear the added token encoder; otherwise a new token may end up there by mistake | |
tokenizer.added_tokens_encoder = {} | |
tokenizer.added_tokens_decoder = {} | |
def sentenize_with_fillers(text, splitter, fix_double_space=True, ignore_errors=False): | |
"""Apply a sentence splitter and return the sentences and all separators before and after them""" | |
if fix_double_space: | |
text = re.sub(" +", " ", text) | |
sentences = splitter.split(text) | |
fillers = [] | |
i = 0 | |
for sentence in sentences: | |
start_idx = text.find(sentence, i) | |
if ignore_errors and start_idx == -1: | |
# print(f"sent not found after {i}: `{sentence}`") | |
start_idx = i + 1 | |
assert start_idx != -1, f"sent not found after {i}: `{sentence}`" | |
fillers.append(text[i:start_idx]) | |
i = start_idx + len(sentence) | |
fillers.append(text[i:]) | |
return sentences, fillers | |
class Translator: | |
def __init__(self): | |
self.model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_URL, low_cpu_mem_usage=True) | |
if torch.cuda.is_available(): | |
self.model.cuda() | |
self.tokenizer = NllbTokenizer.from_pretrained(MODEL_URL) | |
fix_tokenizer(self.tokenizer) | |
self.splitter = SentenceSplitter("ru") | |
self.preprocessor = TextPreprocessor() | |
self.languages = LANGUAGES | |
def translate( | |
self, | |
text, | |
src_lang=L1, | |
tgt_lang=L2, | |
max_length="auto", | |
num_beams=4, | |
by_sentence=True, | |
preprocess=True, | |
**kwargs, | |
): | |
"""Translate a text sentence by sentence, preserving the fillers around the sentences.""" | |
if by_sentence: | |
sents, fillers = sentenize_with_fillers( | |
text, splitter=self.splitter, ignore_errors=True | |
) | |
else: | |
sents = [text] | |
fillers = ["", ""] | |
if preprocess: | |
sents = [self.preprocessor(sent) for sent in sents] | |
results = [] | |
for sent, sep in zip(sents, fillers): | |
results.append(sep) | |
results.append( | |
self.translate_single( | |
sent, | |
src_lang=src_lang, | |
tgt_lang=tgt_lang, | |
max_length=max_length, | |
num_beams=num_beams, | |
**kwargs, | |
) | |
) | |
results.append(fillers[-1]) | |
return "".join(results) | |
def translate_single( | |
self, | |
text, | |
src_lang=L1, | |
tgt_lang=L2, | |
max_length="auto", | |
num_beams=4, | |
n_out=None, | |
**kwargs, | |
): | |
self.tokenizer.src_lang = src_lang | |
encoded = self.tokenizer( | |
text, return_tensors="pt", truncation=True, max_length=512 | |
) | |
if max_length == "auto": | |
max_length = int(32 + 2.0 * encoded.input_ids.shape[1]) | |
generated_tokens = self.model.generate( | |
**encoded.to(self.model.device), | |
forced_bos_token_id=self.tokenizer.lang_code_to_id[tgt_lang], | |
max_length=max_length, | |
num_beams=num_beams, | |
num_return_sequences=n_out or 1, | |
**kwargs, | |
) | |
out = self.tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) | |
if isinstance(text, str) and n_out is None: | |
return out[0] | |
return out | |
if __name__ == "__main__": | |
print("Initializing a translator to pre-download models...") | |
translator = Translator() | |
print("Initialization successful!") | |