Spaces:
Sleeping
Sleeping
import gradio as gr | |
from translation import Translator, LANGUAGES, MODEL_URL | |
LANGUAGES_LIST = list(LANGUAGES.keys()) | |
def translate_wrapper(text, src, trg, by_sentence=True, preprocess=True, random=False, num_beams=4): | |
src_lang = LANGUAGES.get(src) | |
tgt_lang = LANGUAGES.get(trg) | |
result = translator.translate( | |
text=text, | |
src_lang=src_lang, | |
tgt_lang=tgt_lang, | |
do_sample=random, | |
num_beams=int(num_beams), | |
by_sentence=by_sentence, | |
preprocess=preprocess, | |
) | |
return result | |
article = f""" | |
This is the demo for a NLLB-200-600M model fine-tuned for a few (mostly new) languages. | |
The model itself is available at https://huggingface.co/{MODEL_URL} | |
If you want to host in on your own backend, consider running this dockerized app: https://github.com/slone-nlp/nllb-docker-demo. | |
""" | |
interface = gr.Interface( | |
translate_wrapper, | |
[ | |
gr.Textbox(label="Text to Translate", lines=2, placeholder='Enter text to translate'), | |
gr.Dropdown(LANGUAGES_LIST, type="value", label='Source Language', value=LANGUAGES_LIST[0], description='Select the source language'), | |
gr.Dropdown(LANGUAGES_LIST, type="value", label='Target Language', value=LANGUAGES_LIST[1], description='Select the target language'), | |
gr.Checkbox(label="Translate by Sentence", value=True, description='If checked, the text will be translated sentence by sentence'), | |
gr.Checkbox(label="Apply Text Preprocessing", value=True, description='If checked, the text will be preprocessed before translation'), | |
gr.Checkbox(label="Randomize", value=False, description='If checked, the translation will use random sampling'), | |
gr.Slider(minimum=1, maximum=5, step=1, label="Number of Beams", value=4, description='Select the number of beams for the translation'), | |
], | |
"text", | |
title='Erzya-Russian Translation', | |
article=article, | |
) | |
if __name__ == '__main__': | |
translator = Translator() | |
interface.launch() |