Spaces:
Sleeping
Sleeping
First Commit
Browse files- CP_App.ipynb +681 -0
- Telco-Customer-Churn.csv +0 -0
- app.py +64 -0
- best_model.joblib +3 -0
- requirements.txt +437 -0
CP_App.ipynb
ADDED
@@ -0,0 +1,681 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"nbformat": 4,
|
3 |
+
"nbformat_minor": 0,
|
4 |
+
"metadata": {
|
5 |
+
"colab": {
|
6 |
+
"provenance": []
|
7 |
+
},
|
8 |
+
"kernelspec": {
|
9 |
+
"name": "python3",
|
10 |
+
"display_name": "Python 3"
|
11 |
+
},
|
12 |
+
"language_info": {
|
13 |
+
"name": "python"
|
14 |
+
}
|
15 |
+
},
|
16 |
+
"cells": [
|
17 |
+
{
|
18 |
+
"cell_type": "code",
|
19 |
+
"execution_count": 1,
|
20 |
+
"metadata": {
|
21 |
+
"colab": {
|
22 |
+
"base_uri": "https://localhost:8080/"
|
23 |
+
},
|
24 |
+
"id": "K1JbMys043S_",
|
25 |
+
"outputId": "c60da538-342e-4d5d-b678-0acdcf4f1976"
|
26 |
+
},
|
27 |
+
"outputs": [
|
28 |
+
{
|
29 |
+
"output_type": "stream",
|
30 |
+
"name": "stdout",
|
31 |
+
"text": [
|
32 |
+
"Mounted at /content/drive\n"
|
33 |
+
]
|
34 |
+
}
|
35 |
+
],
|
36 |
+
"source": [
|
37 |
+
"from google.colab import drive\n",
|
38 |
+
"drive.mount('/content/drive')"
|
39 |
+
]
|
40 |
+
},
|
41 |
+
{
|
42 |
+
"cell_type": "code",
|
43 |
+
"source": [
|
44 |
+
"!pip install gradio"
|
45 |
+
],
|
46 |
+
"metadata": {
|
47 |
+
"colab": {
|
48 |
+
"base_uri": "https://localhost:8080/"
|
49 |
+
},
|
50 |
+
"id": "IbZYtX6k45IY",
|
51 |
+
"outputId": "c9221d56-1854-47ca-e1b9-41e4ee641859"
|
52 |
+
},
|
53 |
+
"execution_count": 2,
|
54 |
+
"outputs": [
|
55 |
+
{
|
56 |
+
"output_type": "stream",
|
57 |
+
"name": "stdout",
|
58 |
+
"text": [
|
59 |
+
"Collecting gradio\n",
|
60 |
+
" Downloading gradio-3.36.1-py3-none-any.whl (19.8 MB)\n",
|
61 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m19.8/19.8 MB\u001b[0m \u001b[31m55.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
62 |
+
"\u001b[?25hCollecting aiofiles (from gradio)\n",
|
63 |
+
" Downloading aiofiles-23.1.0-py3-none-any.whl (14 kB)\n",
|
64 |
+
"Requirement already satisfied: aiohttp in /usr/local/lib/python3.10/dist-packages (from gradio) (3.8.4)\n",
|
65 |
+
"Requirement already satisfied: altair>=4.2.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (4.2.2)\n",
|
66 |
+
"Collecting fastapi (from gradio)\n",
|
67 |
+
" Downloading fastapi-0.100.0-py3-none-any.whl (65 kB)\n",
|
68 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m65.7/65.7 kB\u001b[0m \u001b[31m7.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
69 |
+
"\u001b[?25hCollecting ffmpy (from gradio)\n",
|
70 |
+
" Downloading ffmpy-0.3.0.tar.gz (4.8 kB)\n",
|
71 |
+
" Preparing metadata (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
72 |
+
"Collecting gradio-client>=0.2.7 (from gradio)\n",
|
73 |
+
" Downloading gradio_client-0.2.7-py3-none-any.whl (288 kB)\n",
|
74 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m288.4/288.4 kB\u001b[0m \u001b[31m28.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
75 |
+
"\u001b[?25hCollecting httpx (from gradio)\n",
|
76 |
+
" Downloading httpx-0.24.1-py3-none-any.whl (75 kB)\n",
|
77 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.4/75.4 kB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
78 |
+
"\u001b[?25hCollecting huggingface-hub>=0.14.0 (from gradio)\n",
|
79 |
+
" Downloading huggingface_hub-0.16.4-py3-none-any.whl (268 kB)\n",
|
80 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m268.8/268.8 kB\u001b[0m \u001b[31m21.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
81 |
+
"\u001b[?25hRequirement already satisfied: jinja2 in /usr/local/lib/python3.10/dist-packages (from gradio) (3.1.2)\n",
|
82 |
+
"Requirement already satisfied: markdown-it-py[linkify]>=2.0.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (3.0.0)\n",
|
83 |
+
"Requirement already satisfied: markupsafe in /usr/local/lib/python3.10/dist-packages (from gradio) (2.1.3)\n",
|
84 |
+
"Requirement already satisfied: matplotlib in /usr/local/lib/python3.10/dist-packages (from gradio) (3.7.1)\n",
|
85 |
+
"Collecting mdit-py-plugins<=0.3.3 (from gradio)\n",
|
86 |
+
" Downloading mdit_py_plugins-0.3.3-py3-none-any.whl (50 kB)\n",
|
87 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.5/50.5 kB\u001b[0m \u001b[31m5.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
88 |
+
"\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.10/dist-packages (from gradio) (1.22.4)\n",
|
89 |
+
"Collecting orjson (from gradio)\n",
|
90 |
+
" Downloading orjson-3.9.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (138 kB)\n",
|
91 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m138.7/138.7 kB\u001b[0m \u001b[31m16.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
92 |
+
"\u001b[?25hRequirement already satisfied: pandas in /usr/local/lib/python3.10/dist-packages (from gradio) (1.5.3)\n",
|
93 |
+
"Requirement already satisfied: pillow in /usr/local/lib/python3.10/dist-packages (from gradio) (8.4.0)\n",
|
94 |
+
"Requirement already satisfied: pydantic in /usr/local/lib/python3.10/dist-packages (from gradio) (1.10.9)\n",
|
95 |
+
"Collecting pydub (from gradio)\n",
|
96 |
+
" Downloading pydub-0.25.1-py2.py3-none-any.whl (32 kB)\n",
|
97 |
+
"Requirement already satisfied: pygments>=2.12.0 in /usr/local/lib/python3.10/dist-packages (from gradio) (2.14.0)\n",
|
98 |
+
"Collecting python-multipart (from gradio)\n",
|
99 |
+
" Downloading python_multipart-0.0.6-py3-none-any.whl (45 kB)\n",
|
100 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.7/45.7 kB\u001b[0m \u001b[31m5.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
101 |
+
"\u001b[?25hRequirement already satisfied: pyyaml in /usr/local/lib/python3.10/dist-packages (from gradio) (6.0)\n",
|
102 |
+
"Requirement already satisfied: requests in /usr/local/lib/python3.10/dist-packages (from gradio) (2.27.1)\n",
|
103 |
+
"Collecting semantic-version (from gradio)\n",
|
104 |
+
" Downloading semantic_version-2.10.0-py2.py3-none-any.whl (15 kB)\n",
|
105 |
+
"Collecting uvicorn>=0.14.0 (from gradio)\n",
|
106 |
+
" Downloading uvicorn-0.22.0-py3-none-any.whl (58 kB)\n",
|
107 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m7.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
108 |
+
"\u001b[?25hCollecting websockets>=10.0 (from gradio)\n",
|
109 |
+
" Downloading websockets-11.0.3-cp310-cp310-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl (129 kB)\n",
|
110 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m129.9/129.9 kB\u001b[0m \u001b[31m15.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
111 |
+
"\u001b[?25hRequirement already satisfied: entrypoints in /usr/local/lib/python3.10/dist-packages (from altair>=4.2.0->gradio) (0.4)\n",
|
112 |
+
"Requirement already satisfied: jsonschema>=3.0 in /usr/local/lib/python3.10/dist-packages (from altair>=4.2.0->gradio) (4.3.3)\n",
|
113 |
+
"Requirement already satisfied: toolz in /usr/local/lib/python3.10/dist-packages (from altair>=4.2.0->gradio) (0.12.0)\n",
|
114 |
+
"Requirement already satisfied: fsspec in /usr/local/lib/python3.10/dist-packages (from gradio-client>=0.2.7->gradio) (2023.6.0)\n",
|
115 |
+
"Requirement already satisfied: packaging in /usr/local/lib/python3.10/dist-packages (from gradio-client>=0.2.7->gradio) (23.1)\n",
|
116 |
+
"Requirement already satisfied: typing-extensions in /usr/local/lib/python3.10/dist-packages (from gradio-client>=0.2.7->gradio) (4.6.3)\n",
|
117 |
+
"Requirement already satisfied: filelock in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.14.0->gradio) (3.12.2)\n",
|
118 |
+
"Requirement already satisfied: tqdm>=4.42.1 in /usr/local/lib/python3.10/dist-packages (from huggingface-hub>=0.14.0->gradio) (4.65.0)\n",
|
119 |
+
"Requirement already satisfied: mdurl~=0.1 in /usr/local/lib/python3.10/dist-packages (from markdown-it-py[linkify]>=2.0.0->gradio) (0.1.2)\n",
|
120 |
+
"Collecting linkify-it-py<3,>=1 (from markdown-it-py[linkify]>=2.0.0->gradio)\n",
|
121 |
+
" Downloading linkify_it_py-2.0.2-py3-none-any.whl (19 kB)\n",
|
122 |
+
"INFO: pip is looking at multiple versions of mdit-py-plugins to determine which version is compatible with other requirements. This could take a while.\n",
|
123 |
+
"Collecting mdit-py-plugins<=0.3.3 (from gradio)\n",
|
124 |
+
" Downloading mdit_py_plugins-0.3.2-py3-none-any.whl (50 kB)\n",
|
125 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.4/50.4 kB\u001b[0m \u001b[31m6.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
126 |
+
"\u001b[?25h Downloading mdit_py_plugins-0.3.1-py3-none-any.whl (46 kB)\n",
|
127 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.5/46.5 kB\u001b[0m \u001b[31m5.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
128 |
+
"\u001b[?25h Downloading mdit_py_plugins-0.3.0-py3-none-any.whl (43 kB)\n",
|
129 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m43.7/43.7 kB\u001b[0m \u001b[31m4.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
130 |
+
"\u001b[?25h Downloading mdit_py_plugins-0.2.8-py3-none-any.whl (41 kB)\n",
|
131 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.0/41.0 kB\u001b[0m \u001b[31m4.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
132 |
+
"\u001b[?25h Downloading mdit_py_plugins-0.2.7-py3-none-any.whl (41 kB)\n",
|
133 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.0/41.0 kB\u001b[0m \u001b[31m4.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
134 |
+
"\u001b[?25h Downloading mdit_py_plugins-0.2.6-py3-none-any.whl (39 kB)\n",
|
135 |
+
" Downloading mdit_py_plugins-0.2.5-py3-none-any.whl (39 kB)\n",
|
136 |
+
"INFO: pip is looking at multiple versions of mdit-py-plugins to determine which version is compatible with other requirements. This could take a while.\n",
|
137 |
+
" Downloading mdit_py_plugins-0.2.4-py3-none-any.whl (39 kB)\n",
|
138 |
+
" Downloading mdit_py_plugins-0.2.3-py3-none-any.whl (39 kB)\n",
|
139 |
+
" Downloading mdit_py_plugins-0.2.2-py3-none-any.whl (39 kB)\n",
|
140 |
+
" Downloading mdit_py_plugins-0.2.1-py3-none-any.whl (38 kB)\n",
|
141 |
+
" Downloading mdit_py_plugins-0.2.0-py3-none-any.whl (38 kB)\n",
|
142 |
+
"INFO: This is taking longer than usual. You might need to provide the dependency resolver with stricter constraints to reduce runtime. See https://pip.pypa.io/warnings/backtracking for guidance. If you want to abort this run, press Ctrl + C.\n",
|
143 |
+
" Downloading mdit_py_plugins-0.1.0-py3-none-any.whl (37 kB)\n",
|
144 |
+
"Collecting markdown-it-py[linkify]>=2.0.0 (from gradio)\n",
|
145 |
+
" Downloading markdown_it_py-3.0.0-py3-none-any.whl (87 kB)\n",
|
146 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m87.5/87.5 kB\u001b[0m \u001b[31m8.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
147 |
+
"\u001b[?25h Downloading markdown_it_py-2.2.0-py3-none-any.whl (84 kB)\n",
|
148 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m84.5/84.5 kB\u001b[0m \u001b[31m10.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
149 |
+
"\u001b[?25hRequirement already satisfied: python-dateutil>=2.8.1 in /usr/local/lib/python3.10/dist-packages (from pandas->gradio) (2.8.2)\n",
|
150 |
+
"Requirement already satisfied: pytz>=2020.1 in /usr/local/lib/python3.10/dist-packages (from pandas->gradio) (2022.7.1)\n",
|
151 |
+
"Requirement already satisfied: click>=7.0 in /usr/local/lib/python3.10/dist-packages (from uvicorn>=0.14.0->gradio) (8.1.3)\n",
|
152 |
+
"Collecting h11>=0.8 (from uvicorn>=0.14.0->gradio)\n",
|
153 |
+
" Downloading h11-0.14.0-py3-none-any.whl (58 kB)\n",
|
154 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m7.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
155 |
+
"\u001b[?25hRequirement already satisfied: attrs>=17.3.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (23.1.0)\n",
|
156 |
+
"Requirement already satisfied: charset-normalizer<4.0,>=2.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (2.0.12)\n",
|
157 |
+
"Requirement already satisfied: multidict<7.0,>=4.5 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (6.0.4)\n",
|
158 |
+
"Requirement already satisfied: async-timeout<5.0,>=4.0.0a3 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (4.0.2)\n",
|
159 |
+
"Requirement already satisfied: yarl<2.0,>=1.0 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (1.9.2)\n",
|
160 |
+
"Requirement already satisfied: frozenlist>=1.1.1 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (1.3.3)\n",
|
161 |
+
"Requirement already satisfied: aiosignal>=1.1.2 in /usr/local/lib/python3.10/dist-packages (from aiohttp->gradio) (1.3.1)\n",
|
162 |
+
"Collecting starlette<0.28.0,>=0.27.0 (from fastapi->gradio)\n",
|
163 |
+
" Downloading starlette-0.27.0-py3-none-any.whl (66 kB)\n",
|
164 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.0/67.0 kB\u001b[0m \u001b[31m8.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
165 |
+
"\u001b[?25hRequirement already satisfied: certifi in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (2023.5.7)\n",
|
166 |
+
"Collecting httpcore<0.18.0,>=0.15.0 (from httpx->gradio)\n",
|
167 |
+
" Downloading httpcore-0.17.3-py3-none-any.whl (74 kB)\n",
|
168 |
+
"\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m74.5/74.5 kB\u001b[0m \u001b[31m6.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n",
|
169 |
+
"\u001b[?25hRequirement already satisfied: idna in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (3.4)\n",
|
170 |
+
"Requirement already satisfied: sniffio in /usr/local/lib/python3.10/dist-packages (from httpx->gradio) (1.3.0)\n",
|
171 |
+
"Requirement already satisfied: contourpy>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gradio) (1.1.0)\n",
|
172 |
+
"Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gradio) (0.11.0)\n",
|
173 |
+
"Requirement already satisfied: fonttools>=4.22.0 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gradio) (4.40.0)\n",
|
174 |
+
"Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gradio) (1.4.4)\n",
|
175 |
+
"Requirement already satisfied: pyparsing>=2.3.1 in /usr/local/lib/python3.10/dist-packages (from matplotlib->gradio) (3.1.0)\n",
|
176 |
+
"Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/local/lib/python3.10/dist-packages (from requests->gradio) (1.26.16)\n",
|
177 |
+
"Requirement already satisfied: anyio<5.0,>=3.0 in /usr/local/lib/python3.10/dist-packages (from httpcore<0.18.0,>=0.15.0->httpx->gradio) (3.7.0)\n",
|
178 |
+
"Requirement already satisfied: pyrsistent!=0.17.0,!=0.17.1,!=0.17.2,>=0.14.0 in /usr/local/lib/python3.10/dist-packages (from jsonschema>=3.0->altair>=4.2.0->gradio) (0.19.3)\n",
|
179 |
+
"Collecting uc-micro-py (from linkify-it-py<3,>=1->markdown-it-py[linkify]>=2.0.0->gradio)\n",
|
180 |
+
" Downloading uc_micro_py-1.0.2-py3-none-any.whl (6.2 kB)\n",
|
181 |
+
"Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.10/dist-packages (from python-dateutil>=2.8.1->pandas->gradio) (1.16.0)\n",
|
182 |
+
"Requirement already satisfied: exceptiongroup in /usr/local/lib/python3.10/dist-packages (from anyio<5.0,>=3.0->httpcore<0.18.0,>=0.15.0->httpx->gradio) (1.1.1)\n",
|
183 |
+
"Building wheels for collected packages: ffmpy\n",
|
184 |
+
" Building wheel for ffmpy (setup.py) ... \u001b[?25l\u001b[?25hdone\n",
|
185 |
+
" Created wheel for ffmpy: filename=ffmpy-0.3.0-py3-none-any.whl size=4694 sha256=833a310a70972f4ea4972633c44808b65fc42559afcf441a716536e3ceddfb1f\n",
|
186 |
+
" Stored in directory: /root/.cache/pip/wheels/0c/c2/0e/3b9c6845c6a4e35beb90910cc70d9ac9ab5d47402bd62af0df\n",
|
187 |
+
"Successfully built ffmpy\n",
|
188 |
+
"Installing collected packages: pydub, ffmpy, websockets, uc-micro-py, semantic-version, python-multipart, orjson, markdown-it-py, h11, aiofiles, uvicorn, starlette, mdit-py-plugins, linkify-it-py, huggingface-hub, httpcore, httpx, fastapi, gradio-client, gradio\n",
|
189 |
+
" Attempting uninstall: markdown-it-py\n",
|
190 |
+
" Found existing installation: markdown-it-py 3.0.0\n",
|
191 |
+
" Uninstalling markdown-it-py-3.0.0:\n",
|
192 |
+
" Successfully uninstalled markdown-it-py-3.0.0\n",
|
193 |
+
"Successfully installed aiofiles-23.1.0 fastapi-0.100.0 ffmpy-0.3.0 gradio-3.36.1 gradio-client-0.2.7 h11-0.14.0 httpcore-0.17.3 httpx-0.24.1 huggingface-hub-0.16.4 linkify-it-py-2.0.2 markdown-it-py-2.2.0 mdit-py-plugins-0.3.3 orjson-3.9.2 pydub-0.25.1 python-multipart-0.0.6 semantic-version-2.10.0 starlette-0.27.0 uc-micro-py-1.0.2 uvicorn-0.22.0 websockets-11.0.3\n"
|
194 |
+
]
|
195 |
+
}
|
196 |
+
]
|
197 |
+
},
|
198 |
+
{
|
199 |
+
"cell_type": "code",
|
200 |
+
"source": [
|
201 |
+
"import gradio as gr\n",
|
202 |
+
"import numpy as np\n",
|
203 |
+
"import pandas as pd\n",
|
204 |
+
"\n",
|
205 |
+
"from sklearn.pipeline import Pipeline\n",
|
206 |
+
"from sklearn.preprocessing import LabelEncoder, OneHotEncoder\n",
|
207 |
+
"from sklearn.ensemble import GradientBoostingClassifier\n",
|
208 |
+
"from sklearn.impute import SimpleImputer\n",
|
209 |
+
"from sklearn.compose import ColumnTransformer\n",
|
210 |
+
"from imblearn.over_sampling import ADASYN\n",
|
211 |
+
"from sklearn.preprocessing import StandardScaler\n",
|
212 |
+
"from sklearn.model_selection import train_test_split\n",
|
213 |
+
"from sklearn.model_selection import cross_val_score\n",
|
214 |
+
"from sklearn.metrics import confusion_matrix\n",
|
215 |
+
"from sklearn.metrics import classification_report\n",
|
216 |
+
"from sklearn.metrics import accuracy_score\n",
|
217 |
+
"from sklearn.metrics import roc_auc_score\n",
|
218 |
+
"from sklearn.metrics import roc_curve\n",
|
219 |
+
"from sklearn.metrics import precision_score, recall_score, f1_score\n",
|
220 |
+
"import sklearn.metrics as metrics\n",
|
221 |
+
"\n",
|
222 |
+
"from joblib import dump\n",
|
223 |
+
"import os\n",
|
224 |
+
"import warnings\n",
|
225 |
+
"warnings.filterwarnings('ignore')"
|
226 |
+
],
|
227 |
+
"metadata": {
|
228 |
+
"id": "DuZ7ZW3E5Ge7"
|
229 |
+
},
|
230 |
+
"execution_count": 3,
|
231 |
+
"outputs": []
|
232 |
+
},
|
233 |
+
{
|
234 |
+
"cell_type": "code",
|
235 |
+
"source": [
|
236 |
+
"c_data = pd.read_csv('/content/drive/MyDrive/Colab Notebooks/Gradio/Telco-Customer-Churn.csv')\n",
|
237 |
+
"c_data.drop(['customerID','PhoneService','SeniorCitizen','StreamingMovies','StreamingTV'], axis=1, inplace=True)\n",
|
238 |
+
"c_data.info()"
|
239 |
+
],
|
240 |
+
"metadata": {
|
241 |
+
"colab": {
|
242 |
+
"base_uri": "https://localhost:8080/"
|
243 |
+
},
|
244 |
+
"id": "nDm6h1Pl6tRd",
|
245 |
+
"outputId": "14740557-c7d4-40fa-9efb-e9882d6c42ed"
|
246 |
+
},
|
247 |
+
"execution_count": 4,
|
248 |
+
"outputs": [
|
249 |
+
{
|
250 |
+
"output_type": "stream",
|
251 |
+
"name": "stdout",
|
252 |
+
"text": [
|
253 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
254 |
+
"RangeIndex: 7043 entries, 0 to 7042\n",
|
255 |
+
"Data columns (total 16 columns):\n",
|
256 |
+
" # Column Non-Null Count Dtype \n",
|
257 |
+
"--- ------ -------------- ----- \n",
|
258 |
+
" 0 gender 7043 non-null object \n",
|
259 |
+
" 1 Partner 7043 non-null object \n",
|
260 |
+
" 2 Dependents 7043 non-null object \n",
|
261 |
+
" 3 tenure 7043 non-null int64 \n",
|
262 |
+
" 4 MultipleLines 7043 non-null object \n",
|
263 |
+
" 5 InternetService 7043 non-null object \n",
|
264 |
+
" 6 OnlineSecurity 7043 non-null object \n",
|
265 |
+
" 7 OnlineBackup 7043 non-null object \n",
|
266 |
+
" 8 DeviceProtection 7043 non-null object \n",
|
267 |
+
" 9 TechSupport 7043 non-null object \n",
|
268 |
+
" 10 Contract 7043 non-null object \n",
|
269 |
+
" 11 PaperlessBilling 7043 non-null object \n",
|
270 |
+
" 12 PaymentMethod 7043 non-null object \n",
|
271 |
+
" 13 MonthlyCharges 7043 non-null float64\n",
|
272 |
+
" 14 TotalCharges 7043 non-null object \n",
|
273 |
+
" 15 Churn 7043 non-null object \n",
|
274 |
+
"dtypes: float64(1), int64(1), object(14)\n",
|
275 |
+
"memory usage: 880.5+ KB\n"
|
276 |
+
]
|
277 |
+
}
|
278 |
+
]
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"cell_type": "code",
|
282 |
+
"source": [
|
283 |
+
"c_data['TotalCharges'] = pd.to_numeric(c_data['TotalCharges'], errors='coerce')\n",
|
284 |
+
"c_data.info()"
|
285 |
+
],
|
286 |
+
"metadata": {
|
287 |
+
"colab": {
|
288 |
+
"base_uri": "https://localhost:8080/"
|
289 |
+
},
|
290 |
+
"id": "w_SwTyvi5GYI",
|
291 |
+
"outputId": "4e29588c-f81a-4d1e-d626-8a80b3f02ce9"
|
292 |
+
},
|
293 |
+
"execution_count": 5,
|
294 |
+
"outputs": [
|
295 |
+
{
|
296 |
+
"output_type": "stream",
|
297 |
+
"name": "stdout",
|
298 |
+
"text": [
|
299 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
300 |
+
"RangeIndex: 7043 entries, 0 to 7042\n",
|
301 |
+
"Data columns (total 16 columns):\n",
|
302 |
+
" # Column Non-Null Count Dtype \n",
|
303 |
+
"--- ------ -------------- ----- \n",
|
304 |
+
" 0 gender 7043 non-null object \n",
|
305 |
+
" 1 Partner 7043 non-null object \n",
|
306 |
+
" 2 Dependents 7043 non-null object \n",
|
307 |
+
" 3 tenure 7043 non-null int64 \n",
|
308 |
+
" 4 MultipleLines 7043 non-null object \n",
|
309 |
+
" 5 InternetService 7043 non-null object \n",
|
310 |
+
" 6 OnlineSecurity 7043 non-null object \n",
|
311 |
+
" 7 OnlineBackup 7043 non-null object \n",
|
312 |
+
" 8 DeviceProtection 7043 non-null object \n",
|
313 |
+
" 9 TechSupport 7043 non-null object \n",
|
314 |
+
" 10 Contract 7043 non-null object \n",
|
315 |
+
" 11 PaperlessBilling 7043 non-null object \n",
|
316 |
+
" 12 PaymentMethod 7043 non-null object \n",
|
317 |
+
" 13 MonthlyCharges 7043 non-null float64\n",
|
318 |
+
" 14 TotalCharges 7032 non-null float64\n",
|
319 |
+
" 15 Churn 7043 non-null object \n",
|
320 |
+
"dtypes: float64(2), int64(1), object(13)\n",
|
321 |
+
"memory usage: 880.5+ KB\n"
|
322 |
+
]
|
323 |
+
}
|
324 |
+
]
|
325 |
+
},
|
326 |
+
{
|
327 |
+
"cell_type": "code",
|
328 |
+
"source": [
|
329 |
+
"# Removing missing values\n",
|
330 |
+
"c_data.dropna(inplace=True)\n",
|
331 |
+
"c_data.duplicated().sum()"
|
332 |
+
],
|
333 |
+
"metadata": {
|
334 |
+
"colab": {
|
335 |
+
"base_uri": "https://localhost:8080/"
|
336 |
+
},
|
337 |
+
"id": "AuIXmyf_5GEm",
|
338 |
+
"outputId": "dbe796ae-7870-4cde-c81d-d1abb3da6382"
|
339 |
+
},
|
340 |
+
"execution_count": 6,
|
341 |
+
"outputs": [
|
342 |
+
{
|
343 |
+
"output_type": "execute_result",
|
344 |
+
"data": {
|
345 |
+
"text/plain": [
|
346 |
+
"26"
|
347 |
+
]
|
348 |
+
},
|
349 |
+
"metadata": {},
|
350 |
+
"execution_count": 6
|
351 |
+
}
|
352 |
+
]
|
353 |
+
},
|
354 |
+
{
|
355 |
+
"cell_type": "code",
|
356 |
+
"source": [
|
357 |
+
"#le = LabelEncoder()\n",
|
358 |
+
"#c_data['Churn'] = le.fit_transform(c_data['Churn'])\n",
|
359 |
+
"#c_data.head()"
|
360 |
+
],
|
361 |
+
"metadata": {
|
362 |
+
"id": "EUI4hmnA8rcL"
|
363 |
+
},
|
364 |
+
"execution_count": 7,
|
365 |
+
"outputs": []
|
366 |
+
},
|
367 |
+
{
|
368 |
+
"cell_type": "code",
|
369 |
+
"source": [
|
370 |
+
"for col in c_data.columns:\n",
|
371 |
+
" print(f\"Column '{col}' categories: {c_data[col].unique()}\")"
|
372 |
+
],
|
373 |
+
"metadata": {
|
374 |
+
"colab": {
|
375 |
+
"base_uri": "https://localhost:8080/"
|
376 |
+
},
|
377 |
+
"id": "2cyG_RbM_yX_",
|
378 |
+
"outputId": "558cfe16-f354-4681-b973-a9809d7bc5e8"
|
379 |
+
},
|
380 |
+
"execution_count": 8,
|
381 |
+
"outputs": [
|
382 |
+
{
|
383 |
+
"output_type": "stream",
|
384 |
+
"name": "stdout",
|
385 |
+
"text": [
|
386 |
+
"Column 'gender' categories: ['Female' 'Male']\n",
|
387 |
+
"Column 'Partner' categories: ['Yes' 'No']\n",
|
388 |
+
"Column 'Dependents' categories: ['No' 'Yes']\n",
|
389 |
+
"Column 'tenure' categories: [ 1 34 2 45 8 22 10 28 62 13 16 58 49 25 69 52 71 21 12 30 47 72 17 27\n",
|
390 |
+
" 5 46 11 70 63 43 15 60 18 66 9 3 31 50 64 56 7 42 35 48 29 65 38 68\n",
|
391 |
+
" 32 55 37 36 41 6 4 33 67 23 57 61 14 20 53 40 59 24 44 19 54 51 26 39]\n",
|
392 |
+
"Column 'MultipleLines' categories: ['No phone service' 'No' 'Yes']\n",
|
393 |
+
"Column 'InternetService' categories: ['DSL' 'Fiber optic' 'No']\n",
|
394 |
+
"Column 'OnlineSecurity' categories: ['No' 'Yes' 'No internet service']\n",
|
395 |
+
"Column 'OnlineBackup' categories: ['Yes' 'No' 'No internet service']\n",
|
396 |
+
"Column 'DeviceProtection' categories: ['No' 'Yes' 'No internet service']\n",
|
397 |
+
"Column 'TechSupport' categories: ['No' 'Yes' 'No internet service']\n",
|
398 |
+
"Column 'Contract' categories: ['Month-to-month' 'One year' 'Two year']\n",
|
399 |
+
"Column 'PaperlessBilling' categories: ['Yes' 'No']\n",
|
400 |
+
"Column 'PaymentMethod' categories: ['Electronic check' 'Mailed check' 'Bank transfer (automatic)'\n",
|
401 |
+
" 'Credit card (automatic)']\n",
|
402 |
+
"Column 'MonthlyCharges' categories: [29.85 56.95 53.85 ... 63.1 44.2 78.7 ]\n",
|
403 |
+
"Column 'TotalCharges' categories: [ 29.85 1889.5 108.15 ... 346.45 306.6 6844.5 ]\n",
|
404 |
+
"Column 'Churn' categories: ['No' 'Yes']\n"
|
405 |
+
]
|
406 |
+
}
|
407 |
+
]
|
408 |
+
},
|
409 |
+
{
|
410 |
+
"cell_type": "code",
|
411 |
+
"source": [
|
412 |
+
"y = c_data['Churn'] # Target Variable\n",
|
413 |
+
"X = c_data.drop('Churn', axis =1) # Independent Variable"
|
414 |
+
],
|
415 |
+
"metadata": {
|
416 |
+
"id": "7pL-2l8T8rU3"
|
417 |
+
},
|
418 |
+
"execution_count": 9,
|
419 |
+
"outputs": []
|
420 |
+
},
|
421 |
+
{
|
422 |
+
"cell_type": "code",
|
423 |
+
"source": [
|
424 |
+
"numeric_transformer = Pipeline(steps = [('imputer',SimpleImputer(strategy = 'mean')),('scaler',StandardScaler())])\n",
|
425 |
+
"categorical_transformer = Pipeline(steps = [('imputer',SimpleImputer(strategy = 'most_frequent')),('one_hot_encoder',OneHotEncoder(handle_unknown='ignore', categories='auto', sparse=False))])"
|
426 |
+
],
|
427 |
+
"metadata": {
|
428 |
+
"id": "HWA2tbQBJU2e"
|
429 |
+
},
|
430 |
+
"execution_count": 10,
|
431 |
+
"outputs": []
|
432 |
+
},
|
433 |
+
{
|
434 |
+
"cell_type": "code",
|
435 |
+
"source": [
|
436 |
+
"data_numeric =['tenure','MonthlyCharges','TotalCharges']\n",
|
437 |
+
"data_categorical =['gender','Partner','Dependents','MultipleLines','InternetService','OnlineSecurity','OnlineBackup','DeviceProtection','TechSupport','Contract','PaperlessBilling','PaymentMethod']\n",
|
438 |
+
"preprocessor =ColumnTransformer(transformers =[('numeric',numeric_transformer,data_numeric),('categoric',categorical_transformer,data_categorical)])"
|
439 |
+
],
|
440 |
+
"metadata": {
|
441 |
+
"id": "ObJQIJ8RJxXl"
|
442 |
+
},
|
443 |
+
"execution_count": 11,
|
444 |
+
"outputs": []
|
445 |
+
},
|
446 |
+
{
|
447 |
+
"cell_type": "code",
|
448 |
+
"source": [
|
449 |
+
"# Identify numeric and non-numeric columns\n",
|
450 |
+
"#num_cols = X.select_dtypes(include=[np.number]).columns.tolist()\n",
|
451 |
+
"#cat_cols = X.select_dtypes(exclude=[np.number]).columns.tolist()\n",
|
452 |
+
"\n",
|
453 |
+
"#X_cat = X[cat_cols].copy()\n",
|
454 |
+
"#X_num = X[num_cols].copy()\n"
|
455 |
+
],
|
456 |
+
"metadata": {
|
457 |
+
"id": "7T37-Hq78q95"
|
458 |
+
},
|
459 |
+
"execution_count": 12,
|
460 |
+
"outputs": []
|
461 |
+
},
|
462 |
+
{
|
463 |
+
"cell_type": "code",
|
464 |
+
"source": [
|
465 |
+
"# Creating imputer variables\n",
|
466 |
+
"#numerical_imputer = SimpleImputer(strategy = \"mean\")\n",
|
467 |
+
"#categorical_imputer = SimpleImputer(strategy = \"most_frequent\")\n",
|
468 |
+
"\n",
|
469 |
+
"\n",
|
470 |
+
"\n",
|
471 |
+
"# Define the column transformer\n",
|
472 |
+
"#categorical_features = cat_cols\n",
|
473 |
+
"#categorical_transformer = Pipeline(steps=[('ohc', OneHotEncoder(handle_unknown='ignore', categories='auto', sparse=False))])\n",
|
474 |
+
"#preprocessor = ColumnTransformer(transformers=[('cat', categorical_transformer, cat_cols)])\n"
|
475 |
+
],
|
476 |
+
"metadata": {
|
477 |
+
"id": "Hx-SIs2K8q2M"
|
478 |
+
},
|
479 |
+
"execution_count": 13,
|
480 |
+
"outputs": []
|
481 |
+
},
|
482 |
+
{
|
483 |
+
"cell_type": "code",
|
484 |
+
"source": [
|
485 |
+
"# Fitting the Imputer\n",
|
486 |
+
"#X_cat_imputed = categorical_imputer.fit_transform(X_cat)\n",
|
487 |
+
"#X_num_imputed = numerical_imputer.fit_transform(X_num)"
|
488 |
+
],
|
489 |
+
"metadata": {
|
490 |
+
"id": "LhfvzFX-KnCe"
|
491 |
+
},
|
492 |
+
"execution_count": 14,
|
493 |
+
"outputs": []
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"cell_type": "code",
|
497 |
+
"source": [
|
498 |
+
"#ohe = OneHotEncoder(handle_unknown='ignore')\n",
|
499 |
+
"#X_cat_encoded = ohe.fit(X_cat_imputed)\n",
|
500 |
+
"#X_cat_encoded = pd.DataFrame(ohe.transform(X_cat_imputed).toarray(),\n",
|
501 |
+
"# columns=ohe.get_feature_names_out(cat_cols))\n",
|
502 |
+
"\n"
|
503 |
+
],
|
504 |
+
"metadata": {
|
505 |
+
"id": "6N8dMlRuKm7k"
|
506 |
+
},
|
507 |
+
"execution_count": 15,
|
508 |
+
"outputs": []
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"cell_type": "code",
|
512 |
+
"source": [
|
513 |
+
"#scaler = StandardScaler()\n",
|
514 |
+
"#X_num_scaled = scaler.fit_transform(X_num_imputed)\n",
|
515 |
+
"#X_num_sc = pd.DataFrame(X_num_scaled, columns = num_cols)\n",
|
516 |
+
"\n"
|
517 |
+
],
|
518 |
+
"metadata": {
|
519 |
+
"id": "EtrHYrNcOvHM"
|
520 |
+
},
|
521 |
+
"execution_count": 16,
|
522 |
+
"outputs": []
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"cell_type": "code",
|
526 |
+
"source": [
|
527 |
+
"#X_df = pd.concat([X_num_sc,X_cat_encoded], axis =1)"
|
528 |
+
],
|
529 |
+
"metadata": {
|
530 |
+
"id": "aATpxlXiTA83"
|
531 |
+
},
|
532 |
+
"execution_count": 17,
|
533 |
+
"outputs": []
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"cell_type": "code",
|
537 |
+
"source": [
|
538 |
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=30)"
|
539 |
+
],
|
540 |
+
"metadata": {
|
541 |
+
"id": "cxIt0C7TZ91X"
|
542 |
+
},
|
543 |
+
"execution_count": 18,
|
544 |
+
"outputs": []
|
545 |
+
},
|
546 |
+
{
|
547 |
+
"cell_type": "code",
|
548 |
+
"source": [
|
549 |
+
"gbc = GradientBoostingClassifier(learning_rate = 0.1, max_depth = 5, n_estimators=50, random_state=30)\n",
|
550 |
+
"gbc = Pipeline(steps =[('processor',preprocessor),('estimator',gbc)])\n",
|
551 |
+
"model = gbc.fit(X_train,y_train)\n",
|
552 |
+
"\n",
|
553 |
+
"# make predictions on the test data\n",
|
554 |
+
"y_pred = model.predict(X_test)\n",
|
555 |
+
"\n",
|
556 |
+
"# generate the classification report\n",
|
557 |
+
"report = classification_report(y_test, y_pred)\n",
|
558 |
+
"name = 'Gradient Boosting Classifier'\n",
|
559 |
+
"# print the classification report\n",
|
560 |
+
"print(f'{name} classification report:\\n{report}\\n')\n"
|
561 |
+
],
|
562 |
+
"metadata": {
|
563 |
+
"id": "DRT-nIuvOu9y",
|
564 |
+
"colab": {
|
565 |
+
"base_uri": "https://localhost:8080/"
|
566 |
+
},
|
567 |
+
"outputId": "ca6a84f9-cf35-4bdb-aaa4-c0155128580c"
|
568 |
+
},
|
569 |
+
"execution_count": 19,
|
570 |
+
"outputs": [
|
571 |
+
{
|
572 |
+
"output_type": "stream",
|
573 |
+
"name": "stdout",
|
574 |
+
"text": [
|
575 |
+
"Gradient Boosting Classifier classification report:\n",
|
576 |
+
" precision recall f1-score support\n",
|
577 |
+
"\n",
|
578 |
+
" No 0.83 0.89 0.86 1031\n",
|
579 |
+
" Yes 0.64 0.51 0.57 376\n",
|
580 |
+
"\n",
|
581 |
+
" accuracy 0.79 1407\n",
|
582 |
+
" macro avg 0.74 0.70 0.72 1407\n",
|
583 |
+
"weighted avg 0.78 0.79 0.78 1407\n",
|
584 |
+
"\n",
|
585 |
+
"\n"
|
586 |
+
]
|
587 |
+
}
|
588 |
+
]
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"cell_type": "code",
|
592 |
+
"source": [
|
593 |
+
" # create a dictionary of a model to fit\n",
|
594 |
+
" #models = {'Gradient Boosting Classifier': GradientBoostingClassifier(learning_rate = 0.1, max_depth = 5, n_estimators=50, random_state=30),}\n",
|
595 |
+
" # iterate over the models and fit each one to the resampled training data\n",
|
596 |
+
" #for name, model in models.items():\n",
|
597 |
+
" # model.fit(X_train, y_train)\n",
|
598 |
+
"\n",
|
599 |
+
" # evaluate each model using cross-validation based on ROC-AUC\n",
|
600 |
+
" #roc_auc_scores = {}\n",
|
601 |
+
" #for name, model in models.items():\n",
|
602 |
+
" # scores = cross_val_score(model, X_train, y_train, cv=5, scoring='roc_auc')\n",
|
603 |
+
" # roc_auc_scores[name] = scores.mean()\n",
|
604 |
+
"\n",
|
605 |
+
" # print the ROC-AUC scores for each model\n",
|
606 |
+
" #for name, score in roc_auc_scores.items():\n",
|
607 |
+
" # print(f'{name}: {score}')\n",
|
608 |
+
"\n",
|
609 |
+
" # choose the model with the highest ROC-AUC score\n",
|
610 |
+
" #best_model_name = max(roc_auc_scores, key=roc_auc_scores.get)\n",
|
611 |
+
" #best_model = models[best_model_name]\n",
|
612 |
+
" #print(f'Best model: {best_model_name}')\n",
|
613 |
+
"\n",
|
614 |
+
"\n",
|
615 |
+
" # iterate over the models and make predictions on the test data for each one\n",
|
616 |
+
" #for name, model in models.items():\n",
|
617 |
+
" # fit the model to the resampled training data\n",
|
618 |
+
" # model.fit(X_train, y_train)\n",
|
619 |
+
" # make predictions on the test data\n",
|
620 |
+
" # y_pred = model.predict(X_test)\n",
|
621 |
+
" # generate the classification report\n",
|
622 |
+
" # report = classification_report(y_test, y_pred)\n",
|
623 |
+
" # print the classification report\n",
|
624 |
+
" # print(f'{name} classification report:\\n{report}\\n')\n",
|
625 |
+
"\n",
|
626 |
+
"\n"
|
627 |
+
],
|
628 |
+
"metadata": {
|
629 |
+
"id": "XW_eIe9ROu2s"
|
630 |
+
},
|
631 |
+
"execution_count": 20,
|
632 |
+
"outputs": []
|
633 |
+
},
|
634 |
+
{
|
635 |
+
"cell_type": "code",
|
636 |
+
"source": [
|
637 |
+
"# set the destination path to the \"export\" directory\n",
|
638 |
+
"destination = \".\"\n",
|
639 |
+
"\n",
|
640 |
+
"#best_model = gbc\n",
|
641 |
+
"models = {\"best_model\": gbc}\n",
|
642 |
+
"\n",
|
643 |
+
"# loop through the models and save them using joblib.dump()\n",
|
644 |
+
"for name, model in models.items():\n",
|
645 |
+
" dump(model, os.path.join(destination, f\"{name}.joblib\"))\n"
|
646 |
+
],
|
647 |
+
"metadata": {
|
648 |
+
"id": "cVzILcaoOusD"
|
649 |
+
},
|
650 |
+
"execution_count": 21,
|
651 |
+
"outputs": []
|
652 |
+
},
|
653 |
+
{
|
654 |
+
"cell_type": "code",
|
655 |
+
"source": [
|
656 |
+
"!pip freeze > requirements.txt"
|
657 |
+
],
|
658 |
+
"metadata": {
|
659 |
+
"id": "HrsFQmUROufW"
|
660 |
+
},
|
661 |
+
"execution_count": 22,
|
662 |
+
"outputs": []
|
663 |
+
},
|
664 |
+
{
|
665 |
+
"cell_type": "code",
|
666 |
+
"source": [
|
667 |
+
"#for name, model in models.items():\n",
|
668 |
+
"# dump(model, os.path.join(destination, f\"{name}.joblib\"))\n",
|
669 |
+
"# if os.path.exists(os.path.join(destination, f\"{name}.joblib\")):\n",
|
670 |
+
"# print(f\"{name} saved successfully!\")\n",
|
671 |
+
"# else:\n",
|
672 |
+
"# print(f\"{name} failed to save.\")"
|
673 |
+
],
|
674 |
+
"metadata": {
|
675 |
+
"id": "xsrbuX4JKmnR"
|
676 |
+
},
|
677 |
+
"execution_count": 23,
|
678 |
+
"outputs": []
|
679 |
+
}
|
680 |
+
]
|
681 |
+
}
|
Telco-Customer-Churn.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
app.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pickle
|
3 |
+
import pandas as pd
|
4 |
+
import numpy as np
|
5 |
+
import joblib
|
6 |
+
from gradio.components import *
|
7 |
+
|
8 |
+
|
9 |
+
#define prediction function
|
10 |
+
def make_prediction(gender, Partner, Dependents, tenure, MultipleLines,
|
11 |
+
InternetService, OnlineSecurity, OnlineBackup, DeviceProtection,
|
12 |
+
TechSupport, Contract, PaperlessBilling, PaymentMethod,
|
13 |
+
MonthlyCharges, TotalCharges):
|
14 |
+
#make a dataframe from input data
|
15 |
+
input_data = pd.DataFrame({'gender':[gender], 'Partner':[Partner], 'Dependents':[Dependents], 'tenure':[tenure], 'MultipleLines':[MultipleLines],
|
16 |
+
'InternetService':[InternetService], 'OnlineSecurity':[OnlineSecurity], 'OnlineBackup':[OnlineBackup], 'DeviceProtection':[DeviceProtection],
|
17 |
+
'TechSupport':[TechSupport], 'Contract':[Contract], 'PaperlessBilling':[PaperlessBilling], 'PaymentMethod':[PaymentMethod],
|
18 |
+
'MonthlyCharges':[MonthlyCharges], 'TotalCharges':[TotalCharges]})
|
19 |
+
|
20 |
+
#load already saved pipeline and make predictions
|
21 |
+
with open("best_model.joblib", "rb") as f:
|
22 |
+
model = joblib.load(f)
|
23 |
+
predt = model.predict(input_data)
|
24 |
+
#return prediction
|
25 |
+
if predt == 'Yes':
|
26 |
+
return 'Customer Will Churn'
|
27 |
+
return 'Customer Will Not Churn'
|
28 |
+
|
29 |
+
#create the input components for gradio
|
30 |
+
gender_input = gr.Dropdown(choices =['Female', 'Male'])
|
31 |
+
Partner_input = gr.Dropdown(choices =['Yes', 'No'])
|
32 |
+
Dependents_input = gr.Dropdown(choices =['Yes', 'No'])
|
33 |
+
tenure_input = gr.Number()
|
34 |
+
MultipleLines_input = gr.Dropdown(choices =['No phone service', 'No', 'Yes'])
|
35 |
+
InternetService_input = gr.Dropdown(choices =['DSL', 'Fiber optic', 'No'])
|
36 |
+
OnlineSecurity_input = gr.Dropdown(choices =['No', 'Yes', 'No internet service'])
|
37 |
+
OnlineBackup_input = gr.Dropdown(choices =['Yes', 'No', 'No internet service'])
|
38 |
+
DeviceProtection_input = gr.Dropdown(choices =['No', 'Yes', 'No internet service'])
|
39 |
+
TechSupport_input = gr.Dropdown(choices =['No', 'Yes', 'No internet service'])
|
40 |
+
Contract_input = gr.Dropdown(choices =['Month-to-month', 'One year', 'Two year'])
|
41 |
+
PaperlessBilling_input = gr.Dropdown(choices =['Yes', 'No'])
|
42 |
+
PaymentMethod_input = gr.Dropdown(choices =['Electronic check', 'Mailed check', 'Bank transfer (automatic)','Credit card (automatic)'])
|
43 |
+
MonthlyCharges_input = gr.Number()
|
44 |
+
TotalCharges_input = gr.Number()
|
45 |
+
|
46 |
+
output = gr.Textbox(label='Prediction')
|
47 |
+
|
48 |
+
app = gr.Interface(fn =make_prediction, inputs =[gender_input,
|
49 |
+
Partner_input,
|
50 |
+
Dependents_input,
|
51 |
+
tenure_input,
|
52 |
+
MultipleLines_input,
|
53 |
+
InternetService_input,
|
54 |
+
OnlineSecurity_input,
|
55 |
+
OnlineBackup_input,
|
56 |
+
DeviceProtection_input,
|
57 |
+
TechSupport_input,
|
58 |
+
Contract_input,
|
59 |
+
PaperlessBilling_input,
|
60 |
+
PaymentMethod_input,
|
61 |
+
MonthlyCharges_input,
|
62 |
+
TotalCharges_input], outputs = output)
|
63 |
+
|
64 |
+
app.launch(share = True, debug = True)
|
best_model.joblib
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:370a1b9437b5c3cd19fb983d819a9b554a1bfd8b1a5a9dd130cc110cfb05f067
|
3 |
+
size 321499
|
requirements.txt
ADDED
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
absl-py==1.4.0
|
2 |
+
aiofiles==23.1.0
|
3 |
+
aiohttp==3.8.4
|
4 |
+
aiosignal==1.3.1
|
5 |
+
alabaster==0.7.13
|
6 |
+
albumentations==1.2.1
|
7 |
+
altair==4.2.2
|
8 |
+
anyio==3.7.0
|
9 |
+
appdirs==1.4.4
|
10 |
+
argon2-cffi==21.3.0
|
11 |
+
argon2-cffi-bindings==21.2.0
|
12 |
+
array-record==0.4.0
|
13 |
+
arviz==0.15.1
|
14 |
+
astropy==5.2.2
|
15 |
+
astunparse==1.6.3
|
16 |
+
async-timeout==4.0.2
|
17 |
+
attrs==23.1.0
|
18 |
+
audioread==3.0.0
|
19 |
+
autograd==1.6.1
|
20 |
+
Babel==2.12.1
|
21 |
+
backcall==0.2.0
|
22 |
+
beautifulsoup4==4.11.2
|
23 |
+
bleach==6.0.0
|
24 |
+
blis==0.7.9
|
25 |
+
blosc2==2.0.0
|
26 |
+
bokeh==2.4.3
|
27 |
+
branca==0.6.0
|
28 |
+
build==0.10.0
|
29 |
+
CacheControl==0.13.1
|
30 |
+
cached-property==1.5.2
|
31 |
+
cachetools==5.3.1
|
32 |
+
catalogue==2.0.8
|
33 |
+
certifi==2023.5.7
|
34 |
+
cffi==1.15.1
|
35 |
+
chardet==4.0.0
|
36 |
+
charset-normalizer==2.0.12
|
37 |
+
chex==0.1.7
|
38 |
+
click==8.1.3
|
39 |
+
click-plugins==1.1.1
|
40 |
+
cligj==0.7.2
|
41 |
+
cloudpickle==2.2.1
|
42 |
+
cmake==3.25.2
|
43 |
+
cmdstanpy==1.1.0
|
44 |
+
colorcet==3.0.1
|
45 |
+
colorlover==0.3.0
|
46 |
+
community==1.0.0b1
|
47 |
+
confection==0.0.4
|
48 |
+
cons==0.4.6
|
49 |
+
contextlib2==0.6.0.post1
|
50 |
+
contourpy==1.1.0
|
51 |
+
convertdate==2.4.0
|
52 |
+
cufflinks==0.17.3
|
53 |
+
cvxopt==1.3.1
|
54 |
+
cvxpy==1.3.1
|
55 |
+
cycler==0.11.0
|
56 |
+
cymem==2.0.7
|
57 |
+
Cython==0.29.35
|
58 |
+
dask==2022.12.1
|
59 |
+
datascience==0.17.6
|
60 |
+
db-dtypes==1.1.1
|
61 |
+
dbus-python==1.2.16
|
62 |
+
debugpy==1.6.6
|
63 |
+
decorator==4.4.2
|
64 |
+
defusedxml==0.7.1
|
65 |
+
distributed==2022.12.1
|
66 |
+
dlib==19.24.2
|
67 |
+
dm-tree==0.1.8
|
68 |
+
docutils==0.16
|
69 |
+
dopamine-rl==4.0.6
|
70 |
+
duckdb==0.8.1
|
71 |
+
earthengine-api==0.1.357
|
72 |
+
easydict==1.10
|
73 |
+
ecos==2.0.12
|
74 |
+
editdistance==0.6.2
|
75 |
+
en-core-web-sm @ https://github.com/explosion/spacy-models/releases/download/en_core_web_sm-3.5.0/en_core_web_sm-3.5.0-py3-none-any.whl#sha256=0964370218b7e1672a30ac50d72cdc6b16f7c867496f1d60925691188f4d2510
|
76 |
+
entrypoints==0.4
|
77 |
+
ephem==4.1.4
|
78 |
+
et-xmlfile==1.1.0
|
79 |
+
etils==1.3.0
|
80 |
+
etuples==0.3.9
|
81 |
+
exceptiongroup==1.1.1
|
82 |
+
fastai==2.7.12
|
83 |
+
fastapi==0.100.0
|
84 |
+
fastcore==1.5.29
|
85 |
+
fastdownload==0.0.7
|
86 |
+
fastjsonschema==2.17.1
|
87 |
+
fastprogress==1.0.3
|
88 |
+
fastrlock==0.8.1
|
89 |
+
ffmpy==0.3.0
|
90 |
+
filelock==3.12.2
|
91 |
+
Fiona==1.9.4.post1
|
92 |
+
firebase-admin==5.3.0
|
93 |
+
Flask==2.2.5
|
94 |
+
flatbuffers==23.5.26
|
95 |
+
flax==0.6.11
|
96 |
+
folium==0.14.0
|
97 |
+
fonttools==4.40.0
|
98 |
+
frozendict==2.3.8
|
99 |
+
frozenlist==1.3.3
|
100 |
+
fsspec==2023.6.0
|
101 |
+
future==0.18.3
|
102 |
+
gast==0.4.0
|
103 |
+
gcsfs==2023.6.0
|
104 |
+
GDAL==3.3.2
|
105 |
+
gdown==4.6.6
|
106 |
+
gensim==4.3.1
|
107 |
+
geographiclib==2.0
|
108 |
+
geopandas==0.13.2
|
109 |
+
geopy==2.3.0
|
110 |
+
gin-config==0.5.0
|
111 |
+
glob2==0.7
|
112 |
+
google==2.0.3
|
113 |
+
google-api-core==2.11.1
|
114 |
+
google-api-python-client==2.84.0
|
115 |
+
google-auth==2.17.3
|
116 |
+
google-auth-httplib2==0.1.0
|
117 |
+
google-auth-oauthlib==1.0.0
|
118 |
+
google-cloud-bigquery==3.10.0
|
119 |
+
google-cloud-bigquery-connection==1.12.0
|
120 |
+
google-cloud-bigquery-storage==2.20.0
|
121 |
+
google-cloud-core==2.3.2
|
122 |
+
google-cloud-datastore==2.15.2
|
123 |
+
google-cloud-firestore==2.11.1
|
124 |
+
google-cloud-functions==1.13.0
|
125 |
+
google-cloud-language==2.9.1
|
126 |
+
google-cloud-storage==2.8.0
|
127 |
+
google-cloud-translate==3.11.1
|
128 |
+
google-colab @ file:///colabtools/dist/google-colab-1.0.0.tar.gz#sha256=65ade0f57298e1ede1ee6fe8aaf53f99c32267220c3fd7615c9c7848d2597b9b
|
129 |
+
google-crc32c==1.5.0
|
130 |
+
google-pasta==0.2.0
|
131 |
+
google-resumable-media==2.5.0
|
132 |
+
googleapis-common-protos==1.59.1
|
133 |
+
googledrivedownloader==0.4
|
134 |
+
gradio==3.36.1
|
135 |
+
gradio_client==0.2.7
|
136 |
+
graphviz==0.20.1
|
137 |
+
greenlet==2.0.2
|
138 |
+
grpc-google-iam-v1==0.12.6
|
139 |
+
grpcio==1.56.0
|
140 |
+
grpcio-status==1.48.2
|
141 |
+
gspread==3.4.2
|
142 |
+
gspread-dataframe==3.0.8
|
143 |
+
gym==0.25.2
|
144 |
+
gym-notices==0.0.8
|
145 |
+
h11==0.14.0
|
146 |
+
h5netcdf==1.2.0
|
147 |
+
h5py==3.8.0
|
148 |
+
holidays==0.27.1
|
149 |
+
holoviews==1.15.4
|
150 |
+
html5lib==1.1
|
151 |
+
httpcore==0.17.3
|
152 |
+
httpimport==1.3.0
|
153 |
+
httplib2==0.21.0
|
154 |
+
httpx==0.24.1
|
155 |
+
huggingface-hub==0.16.4
|
156 |
+
humanize==4.6.0
|
157 |
+
hyperopt==0.2.7
|
158 |
+
idna==3.4
|
159 |
+
imageio==2.25.1
|
160 |
+
imageio-ffmpeg==0.4.8
|
161 |
+
imagesize==1.4.1
|
162 |
+
imbalanced-learn==0.10.1
|
163 |
+
imgaug==0.4.0
|
164 |
+
importlib-resources==5.12.0
|
165 |
+
imutils==0.5.4
|
166 |
+
inflect==6.0.4
|
167 |
+
iniconfig==2.0.0
|
168 |
+
intel-openmp==2023.1.0
|
169 |
+
ipykernel==5.5.6
|
170 |
+
ipython==7.34.0
|
171 |
+
ipython-genutils==0.2.0
|
172 |
+
ipython-sql==0.4.1
|
173 |
+
ipywidgets==7.7.1
|
174 |
+
itsdangerous==2.1.2
|
175 |
+
jax==0.4.10
|
176 |
+
jaxlib @ https://storage.googleapis.com/jax-releases/cuda11/jaxlib-0.4.10+cuda11.cudnn86-cp310-cp310-manylinux2014_x86_64.whl#sha256=fe53205ef12727c80ed5ac2d4506d6732c0c3db69ede4565a7d4df98e609af84
|
177 |
+
jieba==0.42.1
|
178 |
+
Jinja2==3.1.2
|
179 |
+
joblib==1.2.0
|
180 |
+
jsonpickle==3.0.1
|
181 |
+
jsonschema==4.3.3
|
182 |
+
jupyter-client==6.1.12
|
183 |
+
jupyter-console==6.1.0
|
184 |
+
jupyter-server==1.24.0
|
185 |
+
jupyter_core==5.3.1
|
186 |
+
jupyterlab-pygments==0.2.2
|
187 |
+
jupyterlab-widgets==3.0.7
|
188 |
+
kaggle==1.5.13
|
189 |
+
keras==2.12.0
|
190 |
+
kiwisolver==1.4.4
|
191 |
+
langcodes==3.3.0
|
192 |
+
lazy_loader==0.2
|
193 |
+
libclang==16.0.0
|
194 |
+
librosa==0.10.0.post2
|
195 |
+
lightgbm==3.3.5
|
196 |
+
linkify-it-py==2.0.2
|
197 |
+
lit==16.0.6
|
198 |
+
llvmlite==0.39.1
|
199 |
+
locket==1.0.0
|
200 |
+
logical-unification==0.4.6
|
201 |
+
LunarCalendar==0.0.9
|
202 |
+
lxml==4.9.2
|
203 |
+
Markdown==3.4.3
|
204 |
+
markdown-it-py==2.2.0
|
205 |
+
MarkupSafe==2.1.3
|
206 |
+
matplotlib==3.7.1
|
207 |
+
matplotlib-inline==0.1.6
|
208 |
+
matplotlib-venn==0.11.9
|
209 |
+
mdit-py-plugins==0.3.3
|
210 |
+
mdurl==0.1.2
|
211 |
+
miniKanren==1.0.3
|
212 |
+
missingno==0.5.2
|
213 |
+
mistune==0.8.4
|
214 |
+
mizani==0.8.1
|
215 |
+
mkl==2019.0
|
216 |
+
ml-dtypes==0.2.0
|
217 |
+
mlxtend==0.14.0
|
218 |
+
more-itertools==9.1.0
|
219 |
+
moviepy==1.0.3
|
220 |
+
mpmath==1.3.0
|
221 |
+
msgpack==1.0.5
|
222 |
+
multidict==6.0.4
|
223 |
+
multipledispatch==0.6.0
|
224 |
+
multitasking==0.0.11
|
225 |
+
murmurhash==1.0.9
|
226 |
+
music21==8.1.0
|
227 |
+
natsort==8.3.1
|
228 |
+
nbclient==0.8.0
|
229 |
+
nbconvert==6.5.4
|
230 |
+
nbformat==5.9.0
|
231 |
+
nest-asyncio==1.5.6
|
232 |
+
networkx==3.1
|
233 |
+
nibabel==3.0.2
|
234 |
+
nltk==3.8.1
|
235 |
+
notebook==6.4.8
|
236 |
+
numba==0.56.4
|
237 |
+
numexpr==2.8.4
|
238 |
+
numpy==1.22.4
|
239 |
+
oauth2client==4.1.3
|
240 |
+
oauthlib==3.2.2
|
241 |
+
opencv-contrib-python==4.7.0.72
|
242 |
+
opencv-python==4.7.0.72
|
243 |
+
opencv-python-headless==4.7.0.72
|
244 |
+
openpyxl==3.0.10
|
245 |
+
opt-einsum==3.3.0
|
246 |
+
optax==0.1.5
|
247 |
+
orbax-checkpoint==0.2.6
|
248 |
+
orjson==3.9.2
|
249 |
+
osqp==0.6.2.post8
|
250 |
+
packaging==23.1
|
251 |
+
palettable==3.3.3
|
252 |
+
pandas==1.5.3
|
253 |
+
pandas-datareader==0.10.0
|
254 |
+
pandas-gbq==0.17.9
|
255 |
+
pandocfilters==1.5.0
|
256 |
+
panel==0.14.4
|
257 |
+
param==1.13.0
|
258 |
+
parso==0.8.3
|
259 |
+
partd==1.4.0
|
260 |
+
pathlib==1.0.1
|
261 |
+
pathy==0.10.2
|
262 |
+
patsy==0.5.3
|
263 |
+
pexpect==4.8.0
|
264 |
+
pickleshare==0.7.5
|
265 |
+
Pillow==8.4.0
|
266 |
+
pip-tools==6.13.0
|
267 |
+
platformdirs==3.7.0
|
268 |
+
plotly==5.13.1
|
269 |
+
plotnine==0.10.1
|
270 |
+
pluggy==1.2.0
|
271 |
+
polars==0.17.3
|
272 |
+
pooch==1.6.0
|
273 |
+
portpicker==1.5.2
|
274 |
+
prefetch-generator==1.0.3
|
275 |
+
preshed==3.0.8
|
276 |
+
prettytable==0.7.2
|
277 |
+
proglog==0.1.10
|
278 |
+
progressbar2==4.2.0
|
279 |
+
prometheus-client==0.17.0
|
280 |
+
promise==2.3
|
281 |
+
prompt-toolkit==3.0.38
|
282 |
+
prophet==1.1.4
|
283 |
+
proto-plus==1.22.3
|
284 |
+
protobuf==3.20.3
|
285 |
+
psutil==5.9.5
|
286 |
+
psycopg2==2.9.6
|
287 |
+
ptyprocess==0.7.0
|
288 |
+
py-cpuinfo==9.0.0
|
289 |
+
py4j==0.10.9.7
|
290 |
+
pyarrow==9.0.0
|
291 |
+
pyasn1==0.5.0
|
292 |
+
pyasn1-modules==0.3.0
|
293 |
+
pycocotools==2.0.6
|
294 |
+
pycparser==2.21
|
295 |
+
pyct==0.5.0
|
296 |
+
pydantic==1.10.9
|
297 |
+
pydata-google-auth==1.8.0
|
298 |
+
pydot==1.4.2
|
299 |
+
pydot-ng==2.0.0
|
300 |
+
pydotplus==2.0.2
|
301 |
+
PyDrive==1.3.1
|
302 |
+
pydub==0.25.1
|
303 |
+
pyerfa==2.0.0.3
|
304 |
+
pygame==2.4.0
|
305 |
+
Pygments==2.14.0
|
306 |
+
PyGObject==3.36.0
|
307 |
+
pymc==5.1.2
|
308 |
+
PyMeeus==0.5.12
|
309 |
+
pymystem3==0.2.0
|
310 |
+
PyOpenGL==3.1.7
|
311 |
+
pyparsing==3.1.0
|
312 |
+
pyproj==3.6.0
|
313 |
+
pyproject_hooks==1.0.0
|
314 |
+
pyrsistent==0.19.3
|
315 |
+
PySocks==1.7.1
|
316 |
+
pytensor==2.10.1
|
317 |
+
pytest==7.2.2
|
318 |
+
python-apt==0.0.0
|
319 |
+
python-dateutil==2.8.2
|
320 |
+
python-louvain==0.16
|
321 |
+
python-multipart==0.0.6
|
322 |
+
python-slugify==8.0.1
|
323 |
+
python-utils==3.7.0
|
324 |
+
pytz==2022.7.1
|
325 |
+
pyviz-comms==2.3.2
|
326 |
+
PyWavelets==1.4.1
|
327 |
+
PyYAML==6.0
|
328 |
+
pyzmq==23.2.1
|
329 |
+
qdldl==0.1.7
|
330 |
+
qudida==0.0.4
|
331 |
+
regex==2022.10.31
|
332 |
+
requests==2.27.1
|
333 |
+
requests-oauthlib==1.3.1
|
334 |
+
requests-unixsocket==0.2.0
|
335 |
+
requirements-parser==0.5.0
|
336 |
+
rich==13.4.2
|
337 |
+
rpy2==3.5.5
|
338 |
+
rsa==4.9
|
339 |
+
scikit-image==0.19.3
|
340 |
+
scikit-learn==1.2.2
|
341 |
+
scipy==1.10.1
|
342 |
+
scs==3.2.3
|
343 |
+
seaborn==0.12.2
|
344 |
+
semantic-version==2.10.0
|
345 |
+
Send2Trash==1.8.2
|
346 |
+
shapely==2.0.1
|
347 |
+
six==1.16.0
|
348 |
+
sklearn-pandas==2.2.0
|
349 |
+
smart-open==6.3.0
|
350 |
+
sniffio==1.3.0
|
351 |
+
snowballstemmer==2.2.0
|
352 |
+
sortedcontainers==2.4.0
|
353 |
+
soundfile==0.12.1
|
354 |
+
soupsieve==2.4.1
|
355 |
+
soxr==0.3.5
|
356 |
+
spacy==3.5.3
|
357 |
+
spacy-legacy==3.0.12
|
358 |
+
spacy-loggers==1.0.4
|
359 |
+
Sphinx==3.5.4
|
360 |
+
sphinxcontrib-applehelp==1.0.4
|
361 |
+
sphinxcontrib-devhelp==1.0.2
|
362 |
+
sphinxcontrib-htmlhelp==2.0.1
|
363 |
+
sphinxcontrib-jsmath==1.0.1
|
364 |
+
sphinxcontrib-qthelp==1.0.3
|
365 |
+
sphinxcontrib-serializinghtml==1.1.5
|
366 |
+
SQLAlchemy==2.0.16
|
367 |
+
sqlparse==0.4.4
|
368 |
+
srsly==2.4.6
|
369 |
+
starlette==0.27.0
|
370 |
+
statsmodels==0.13.5
|
371 |
+
sympy==1.11.1
|
372 |
+
tables==3.8.0
|
373 |
+
tabulate==0.8.10
|
374 |
+
tblib==2.0.0
|
375 |
+
tenacity==8.2.2
|
376 |
+
tensorboard==2.12.3
|
377 |
+
tensorboard-data-server==0.7.1
|
378 |
+
tensorflow==2.12.0
|
379 |
+
tensorflow-datasets==4.9.2
|
380 |
+
tensorflow-estimator==2.12.0
|
381 |
+
tensorflow-gcs-config==2.12.0
|
382 |
+
tensorflow-hub==0.13.0
|
383 |
+
tensorflow-io-gcs-filesystem==0.32.0
|
384 |
+
tensorflow-metadata==1.13.1
|
385 |
+
tensorflow-probability==0.20.1
|
386 |
+
tensorstore==0.1.38
|
387 |
+
termcolor==2.3.0
|
388 |
+
terminado==0.17.1
|
389 |
+
text-unidecode==1.3
|
390 |
+
textblob==0.17.1
|
391 |
+
tf-slim==1.1.0
|
392 |
+
thinc==8.1.10
|
393 |
+
threadpoolctl==3.1.0
|
394 |
+
tifffile==2023.4.12
|
395 |
+
tinycss2==1.2.1
|
396 |
+
toml==0.10.2
|
397 |
+
tomli==2.0.1
|
398 |
+
toolz==0.12.0
|
399 |
+
torch @ https://download.pytorch.org/whl/cu118/torch-2.0.1%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=a7a49d459bf4862f64f7bc1a68beccf8881c2fa9f3e0569608e16ba6f85ebf7b
|
400 |
+
torchaudio @ https://download.pytorch.org/whl/cu118/torchaudio-2.0.2%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=26692645ea061a005c57ec581a2d0425210ac6ba9f923edf11cc9b0ef3a111e9
|
401 |
+
torchdata==0.6.1
|
402 |
+
torchsummary==1.5.1
|
403 |
+
torchtext==0.15.2
|
404 |
+
torchvision @ https://download.pytorch.org/whl/cu118/torchvision-0.15.2%2Bcu118-cp310-cp310-linux_x86_64.whl#sha256=19ca4ab5d6179bbe53cff79df1a855ee6533c2861ddc7389f68349d8b9f8302a
|
405 |
+
tornado==6.3.1
|
406 |
+
tqdm==4.65.0
|
407 |
+
traitlets==5.7.1
|
408 |
+
triton==2.0.0
|
409 |
+
tweepy==4.13.0
|
410 |
+
typer==0.7.0
|
411 |
+
types-setuptools==68.0.0.1
|
412 |
+
typing_extensions==4.6.3
|
413 |
+
tzlocal==5.0.1
|
414 |
+
uc-micro-py==1.0.2
|
415 |
+
uritemplate==4.1.1
|
416 |
+
urllib3==1.26.16
|
417 |
+
uvicorn==0.22.0
|
418 |
+
vega-datasets==0.9.0
|
419 |
+
wasabi==1.1.2
|
420 |
+
wcwidth==0.2.6
|
421 |
+
webcolors==1.13
|
422 |
+
webencodings==0.5.1
|
423 |
+
websocket-client==1.6.0
|
424 |
+
websockets==11.0.3
|
425 |
+
Werkzeug==2.3.6
|
426 |
+
widgetsnbextension==3.6.4
|
427 |
+
wordcloud==1.8.2.2
|
428 |
+
wrapt==1.14.1
|
429 |
+
xarray==2022.12.0
|
430 |
+
xarray-einstats==0.5.1
|
431 |
+
xgboost==1.7.6
|
432 |
+
xlrd==2.0.1
|
433 |
+
yarl==1.9.2
|
434 |
+
yellowbrick==1.5
|
435 |
+
yfinance==0.2.21
|
436 |
+
zict==3.0.0
|
437 |
+
zipp==3.15.0
|