|
|
|
|
|
|
|
|
|
|
|
import json |
|
import os |
|
import shutil |
|
import torch |
|
import time |
|
from pathlib import Path |
|
import torch |
|
from tqdm import tqdm |
|
import re |
|
import logging |
|
import json5 |
|
import accelerate |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import ProjectConfiguration |
|
from torch.utils.data import ConcatDataset, DataLoader |
|
from accelerate import DistributedDataParallelKwargs |
|
from schedulers.scheduler import Eden |
|
from models.base.base_sampler import build_samplers |
|
from models.base.new_trainer import BaseTrainer |
|
|
|
|
|
class TTSTrainer(BaseTrainer): |
|
r"""The base trainer for all TTS models. It inherits from BaseTrainer and implements |
|
``build_criterion``, ``_build_dataset`` and ``_build_singer_lut`` methods. You can inherit from this |
|
class, and implement ``_build_model``, ``_forward_step``. |
|
""" |
|
|
|
def __init__(self, args=None, cfg=None): |
|
self.args = args |
|
self.cfg = cfg |
|
|
|
cfg.exp_name = args.exp_name |
|
|
|
|
|
self._init_accelerator() |
|
self.accelerator.wait_for_everyone() |
|
|
|
with self.accelerator.main_process_first(): |
|
self.logger = get_logger(args.exp_name, log_level="INFO") |
|
|
|
|
|
self.logger.info("=" * 56) |
|
self.logger.info("||\t\t" + "New training process started." + "\t\t||") |
|
self.logger.info("=" * 56) |
|
self.logger.info("\n") |
|
self.logger.debug(f"Using {args.log_level.upper()} logging level.") |
|
self.logger.info(f"Experiment name: {args.exp_name}") |
|
self.logger.info(f"Experiment directory: {self.exp_dir}") |
|
self.checkpoint_dir = os.path.join(self.exp_dir, "checkpoint") |
|
if self.accelerator.is_main_process: |
|
os.makedirs(self.checkpoint_dir, exist_ok=True) |
|
self.logger.debug(f"Checkpoint directory: {self.checkpoint_dir}") |
|
|
|
|
|
self.batch_count: int = 0 |
|
self.step: int = 0 |
|
self.epoch: int = 0 |
|
self.max_epoch = ( |
|
self.cfg.train.max_epoch if self.cfg.train.max_epoch > 0 else float("inf") |
|
) |
|
self.logger.info( |
|
"Max epoch: {}".format( |
|
self.max_epoch if self.max_epoch < float("inf") else "Unlimited" |
|
) |
|
) |
|
|
|
|
|
if self.accelerator.is_main_process: |
|
self.__check_basic_configs() |
|
|
|
self.save_checkpoint_stride = self.cfg.train.save_checkpoint_stride |
|
self.checkpoints_path = [ |
|
[] for _ in range(len(self.save_checkpoint_stride)) |
|
] |
|
self.keep_last = [ |
|
i if i > 0 else float("inf") for i in self.cfg.train.keep_last |
|
] |
|
self.run_eval = self.cfg.train.run_eval |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
start = time.monotonic_ns() |
|
self._set_random_seed(self.cfg.train.random_seed) |
|
end = time.monotonic_ns() |
|
self.logger.debug( |
|
f"Setting random seed done in {(end - start) / 1e6:.2f}ms" |
|
) |
|
self.logger.debug(f"Random seed: {self.cfg.train.random_seed}") |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
self.logger.info("Building dataset...") |
|
start = time.monotonic_ns() |
|
self.train_dataloader, self.valid_dataloader = self._build_dataloader() |
|
end = time.monotonic_ns() |
|
self.logger.info(f"Building dataset done in {(end - start) / 1e6:.2f}ms") |
|
|
|
|
|
if cfg.preprocess.use_phone and cfg.preprocess.phone_extractor != "lexicon": |
|
self._save_phone_symbols_file_to_exp_path() |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
self.logger.info("Building model...") |
|
start = time.monotonic_ns() |
|
self.model = self._build_model() |
|
end = time.monotonic_ns() |
|
self.logger.debug(self.model) |
|
self.logger.info(f"Building model done in {(end - start) / 1e6:.2f}ms") |
|
self.logger.info( |
|
f"Model parameters: {self.__count_parameters(self.model)/1e6:.2f}M" |
|
) |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
self.logger.info("Building optimizer and scheduler...") |
|
start = time.monotonic_ns() |
|
self.optimizer = self._build_optimizer() |
|
self.scheduler = self._build_scheduler() |
|
end = time.monotonic_ns() |
|
self.logger.info( |
|
f"Building optimizer and scheduler done in {(end - start) / 1e6:.2f}ms" |
|
) |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
self.logger.info("Building criterion...") |
|
start = time.monotonic_ns() |
|
self.criterion = self._build_criterion() |
|
end = time.monotonic_ns() |
|
self.logger.info(f"Building criterion done in {(end - start) / 1e6:.2f}ms") |
|
|
|
|
|
with self.accelerator.main_process_first(): |
|
self._check_resume() |
|
|
|
|
|
self.logger.info("Initializing accelerate...") |
|
start = time.monotonic_ns() |
|
self._accelerator_prepare() |
|
end = time.monotonic_ns() |
|
self.logger.info(f"Initializing accelerate done in {(end - start) / 1e6:.2f}ms") |
|
|
|
|
|
self.config_save_path = os.path.join(self.exp_dir, "args.json") |
|
self.device = self.accelerator.device |
|
|
|
if cfg.preprocess.use_spkid and cfg.train.multi_speaker_training: |
|
self.speakers = self._build_speaker_lut() |
|
self.utt2spk_dict = self._build_utt2spk_dict() |
|
|
|
|
|
self.task_type = "TTS" |
|
self.logger.info("Task type: {}".format(self.task_type)) |
|
|
|
def _check_resume(self): |
|
|
|
if self.args.resume or ( |
|
self.cfg.model_type == "VALLE" and self.args.train_stage == 2 |
|
): |
|
checkpoint_dir = self.checkpoint_dir |
|
if self.cfg.model_type == "VALLE" and self.args.train_stage == 2: |
|
ls = [str(i) for i in Path(checkpoint_dir).glob("*")] |
|
if ( |
|
self.args.checkpoint_path is None or len(ls) == 0 |
|
): |
|
assert ( |
|
self.args.ar_model_ckpt_dir is not None |
|
), "Error: ar_model_ckpt_dir should be set to train nar model." |
|
self.args.resume_type = "finetune" |
|
checkpoint_dir = self.args.ar_model_ckpt_dir |
|
self.logger.info( |
|
f"Training NAR model at stage 2 using the checkpoint of AR model at stage 1." |
|
) |
|
|
|
self.logger.info(f"Resuming from checkpoint: {checkpoint_dir}") |
|
start = time.monotonic_ns() |
|
self.ckpt_path = self._load_model( |
|
checkpoint_dir, self.args.checkpoint_path, self.args.resume_type |
|
) |
|
self.logger.info(f"Checkpoint path: {self.ckpt_path}") |
|
end = time.monotonic_ns() |
|
self.logger.info( |
|
f"Resuming from checkpoint done in {(end - start) / 1e6:.2f}ms" |
|
) |
|
self.checkpoints_path = json.load( |
|
open(os.path.join(self.ckpt_path, "ckpts.json"), "r") |
|
) |
|
|
|
def _init_accelerator(self): |
|
self.exp_dir = os.path.join( |
|
os.path.abspath(self.cfg.log_dir), self.args.exp_name |
|
) |
|
project_config = ProjectConfiguration( |
|
project_dir=self.exp_dir, |
|
logging_dir=os.path.join(self.exp_dir, "log"), |
|
) |
|
kwargs = DistributedDataParallelKwargs(find_unused_parameters=True) |
|
self.accelerator = accelerate.Accelerator( |
|
gradient_accumulation_steps=self.cfg.train.gradient_accumulation_step, |
|
log_with=self.cfg.train.tracker, |
|
project_config=project_config, |
|
kwargs_handlers=[kwargs], |
|
) |
|
if self.accelerator.is_main_process: |
|
os.makedirs(project_config.project_dir, exist_ok=True) |
|
os.makedirs(project_config.logging_dir, exist_ok=True) |
|
with self.accelerator.main_process_first(): |
|
self.accelerator.init_trackers(self.args.exp_name) |
|
|
|
def _accelerator_prepare(self): |
|
( |
|
self.train_dataloader, |
|
self.valid_dataloader, |
|
) = self.accelerator.prepare( |
|
self.train_dataloader, |
|
self.valid_dataloader, |
|
) |
|
|
|
if isinstance(self.model, dict): |
|
for key in self.model.keys(): |
|
self.model[key] = self.accelerator.prepare(self.model[key]) |
|
else: |
|
self.model = self.accelerator.prepare(self.model) |
|
|
|
if isinstance(self.optimizer, dict): |
|
for key in self.optimizer.keys(): |
|
self.optimizer[key] = self.accelerator.prepare(self.optimizer[key]) |
|
else: |
|
self.optimizer = self.accelerator.prepare(self.optimizer) |
|
|
|
if isinstance(self.scheduler, dict): |
|
for key in self.scheduler.keys(): |
|
self.scheduler[key] = self.accelerator.prepare(self.scheduler[key]) |
|
else: |
|
self.scheduler = self.accelerator.prepare(self.scheduler) |
|
|
|
|
|
def _build_dataset(self): |
|
pass |
|
|
|
def _build_criterion(self): |
|
pass |
|
|
|
def _build_model(self): |
|
pass |
|
|
|
def _build_dataloader(self): |
|
"""Build dataloader which merges a series of datasets.""" |
|
|
|
Dataset, Collator = self._build_dataset() |
|
|
|
|
|
datasets_list = [] |
|
for dataset in self.cfg.dataset: |
|
subdataset = Dataset(self.cfg, dataset, is_valid=False) |
|
datasets_list.append(subdataset) |
|
train_dataset = ConcatDataset(datasets_list) |
|
train_collate = Collator(self.cfg) |
|
_, batch_sampler = build_samplers(train_dataset, self.cfg, self.logger, "train") |
|
train_loader = DataLoader( |
|
train_dataset, |
|
collate_fn=train_collate, |
|
batch_sampler=batch_sampler, |
|
num_workers=self.cfg.train.dataloader.num_worker, |
|
pin_memory=self.cfg.train.dataloader.pin_memory, |
|
) |
|
|
|
|
|
datasets_list = [] |
|
for dataset in self.cfg.dataset: |
|
subdataset = Dataset(self.cfg, dataset, is_valid=True) |
|
datasets_list.append(subdataset) |
|
valid_dataset = ConcatDataset(datasets_list) |
|
valid_collate = Collator(self.cfg) |
|
_, batch_sampler = build_samplers(valid_dataset, self.cfg, self.logger, "valid") |
|
valid_loader = DataLoader( |
|
valid_dataset, |
|
collate_fn=valid_collate, |
|
batch_sampler=batch_sampler, |
|
num_workers=self.cfg.train.dataloader.num_worker, |
|
pin_memory=self.cfg.train.dataloader.pin_memory, |
|
) |
|
return train_loader, valid_loader |
|
|
|
def _build_optimizer(self): |
|
pass |
|
|
|
def _build_scheduler(self): |
|
pass |
|
|
|
def _load_model(self, checkpoint_dir, checkpoint_path=None, resume_type="resume"): |
|
"""Load model from checkpoint. If a folder is given, it will |
|
load the latest checkpoint in checkpoint_dir. If a path is given |
|
it will load the checkpoint specified by checkpoint_path. |
|
**Only use this method after** ``accelerator.prepare()``. |
|
""" |
|
if checkpoint_path is None or checkpoint_path == "": |
|
ls = [str(i) for i in Path(checkpoint_dir).glob("*")] |
|
ls.sort(key=lambda x: int(x.split("_")[-3].split("-")[-1]), reverse=True) |
|
checkpoint_path = ls[0] |
|
self.logger.info("Load model from {}".format(checkpoint_path)) |
|
print("Load model from {}".format(checkpoint_path)) |
|
if resume_type == "resume": |
|
self.accelerator.load_state(checkpoint_path) |
|
self.epoch = int(checkpoint_path.split("_")[-3].split("-")[-1]) + 1 |
|
self.step = int(checkpoint_path.split("_")[-2].split("-")[-1]) + 1 |
|
elif resume_type == "finetune": |
|
if isinstance(self.model, dict): |
|
for idx, sub_model in enumerate(self.model.keys()): |
|
if idx == 0: |
|
ckpt_name = "pytorch_model.bin" |
|
else: |
|
ckpt_name = "pytorch_model_{}.bin".format(idx) |
|
|
|
self.model[sub_model].load_state_dict( |
|
torch.load(os.path.join(checkpoint_path, ckpt_name)) |
|
) |
|
self.model[sub_model].cuda(self.accelerator.device) |
|
else: |
|
self.model.load_state_dict( |
|
torch.load(os.path.join(checkpoint_path, "pytorch_model.bin")) |
|
) |
|
self.model.cuda(self.accelerator.device) |
|
self.logger.info("Load model weights for finetune SUCCESS!") |
|
|
|
else: |
|
raise ValueError("Unsupported resume type: {}".format(resume_type)) |
|
|
|
return checkpoint_path |
|
|
|
|
|
def train_loop(self): |
|
r"""Training loop. The public entry of training process.""" |
|
|
|
self.accelerator.wait_for_everyone() |
|
|
|
if self.accelerator.is_main_process: |
|
self.__dump_cfg(self.config_save_path) |
|
|
|
|
|
|
|
|
|
self.accelerator.wait_for_everyone() |
|
while self.epoch < self.max_epoch: |
|
self.logger.info("\n") |
|
self.logger.info("-" * 32) |
|
self.logger.info("Epoch {}: ".format(self.epoch)) |
|
|
|
|
|
train_total_loss, train_losses = self._train_epoch() |
|
if isinstance(train_losses, dict): |
|
for key, loss in train_losses.items(): |
|
self.logger.info(" |- Train/{} Loss: {:.6f}".format(key, loss)) |
|
self.accelerator.log( |
|
{"Epoch/Train {} Loss".format(key): loss}, |
|
step=self.epoch, |
|
) |
|
|
|
valid_total_loss, valid_losses = self._valid_epoch() |
|
if isinstance(valid_losses, dict): |
|
for key, loss in valid_losses.items(): |
|
self.logger.info(" |- Valid/{} Loss: {:.6f}".format(key, loss)) |
|
self.accelerator.log( |
|
{"Epoch/Valid {} Loss".format(key): loss}, |
|
step=self.epoch, |
|
) |
|
|
|
self.logger.info(" |- Train/Loss: {:.6f}".format(train_total_loss)) |
|
self.logger.info(" |- Valid/Loss: {:.6f}".format(valid_total_loss)) |
|
self.accelerator.log( |
|
{ |
|
"Epoch/Train Loss": train_total_loss, |
|
"Epoch/Valid Loss": valid_total_loss, |
|
}, |
|
step=self.epoch, |
|
) |
|
|
|
self.accelerator.wait_for_everyone() |
|
|
|
|
|
run_eval = False |
|
if self.accelerator.is_main_process: |
|
save_checkpoint = False |
|
hit_dix = [] |
|
for i, num in enumerate(self.save_checkpoint_stride): |
|
if self.epoch % num == 0: |
|
save_checkpoint = True |
|
hit_dix.append(i) |
|
run_eval |= self.run_eval[i] |
|
|
|
self.accelerator.wait_for_everyone() |
|
if self.accelerator.is_main_process and save_checkpoint: |
|
path = os.path.join( |
|
self.checkpoint_dir, |
|
"epoch-{:04d}_step-{:07d}_loss-{:.6f}".format( |
|
self.epoch, self.step, train_total_loss |
|
), |
|
) |
|
self.accelerator.save_state(path) |
|
|
|
json.dump( |
|
self.checkpoints_path, |
|
open(os.path.join(path, "ckpts.json"), "w"), |
|
ensure_ascii=False, |
|
indent=4, |
|
) |
|
|
|
|
|
to_remove = [] |
|
for idx in hit_dix: |
|
self.checkpoints_path[idx].append(path) |
|
while len(self.checkpoints_path[idx]) > self.keep_last[idx]: |
|
to_remove.append((idx, self.checkpoints_path[idx].pop(0))) |
|
|
|
|
|
total = set() |
|
for i in self.checkpoints_path: |
|
total |= set(i) |
|
do_remove = set() |
|
for idx, path in to_remove[::-1]: |
|
if path in total: |
|
self.checkpoints_path[idx].insert(0, path) |
|
else: |
|
do_remove.add(path) |
|
|
|
|
|
for path in do_remove: |
|
shutil.rmtree(path, ignore_errors=True) |
|
self.logger.debug(f"Remove old checkpoint: {path}") |
|
|
|
self.accelerator.wait_for_everyone() |
|
if run_eval: |
|
|
|
pass |
|
|
|
|
|
self.epoch += 1 |
|
|
|
|
|
self.accelerator.wait_for_everyone() |
|
if self.accelerator.is_main_process: |
|
path = os.path.join( |
|
self.checkpoint_dir, |
|
"final_epoch-{:04d}_step-{:07d}_loss-{:.6f}".format( |
|
self.epoch, self.step, valid_total_loss |
|
), |
|
) |
|
self.accelerator.save_state( |
|
os.path.join( |
|
self.checkpoint_dir, |
|
"final_epoch-{:04d}_step-{:07d}_loss-{:.6f}".format( |
|
self.epoch, self.step, valid_total_loss |
|
), |
|
) |
|
) |
|
|
|
json.dump( |
|
self.checkpoints_path, |
|
open(os.path.join(path, "ckpts.json"), "w"), |
|
ensure_ascii=False, |
|
indent=4, |
|
) |
|
|
|
self.accelerator.end_training() |
|
|
|
|
|
def _train_epoch(self): |
|
r"""Training epoch. Should return average loss of a batch (sample) over |
|
one epoch. See ``train_loop`` for usage. |
|
""" |
|
if isinstance(self.model, dict): |
|
for key in self.model.keys(): |
|
self.model[key].train() |
|
else: |
|
self.model.train() |
|
|
|
epoch_sum_loss: float = 0.0 |
|
epoch_losses: dict = {} |
|
epoch_step: int = 0 |
|
for batch in tqdm( |
|
self.train_dataloader, |
|
desc=f"Training Epoch {self.epoch}", |
|
unit="batch", |
|
colour="GREEN", |
|
leave=False, |
|
dynamic_ncols=True, |
|
smoothing=0.04, |
|
disable=not self.accelerator.is_main_process, |
|
): |
|
|
|
with self.accelerator.accumulate(self.model): |
|
total_loss, train_losses, _ = self._train_step(batch) |
|
self.batch_count += 1 |
|
|
|
|
|
|
|
if self.batch_count % self.cfg.train.gradient_accumulation_step == 0: |
|
if isinstance(self.scheduler, dict): |
|
for key in self.scheduler.keys(): |
|
self.scheduler[key].step() |
|
else: |
|
if isinstance(self.scheduler, Eden): |
|
self.scheduler.step_batch(self.step) |
|
else: |
|
self.scheduler.step() |
|
|
|
epoch_sum_loss += total_loss |
|
|
|
if isinstance(train_losses, dict): |
|
for key, value in train_losses.items(): |
|
epoch_losses[key] += value |
|
|
|
if isinstance(train_losses, dict): |
|
for key, loss in train_losses.items(): |
|
self.accelerator.log( |
|
{"Epoch/Train {} Loss".format(key): loss}, |
|
step=self.step, |
|
) |
|
|
|
self.step += 1 |
|
epoch_step += 1 |
|
|
|
self.accelerator.wait_for_everyone() |
|
|
|
epoch_sum_loss = ( |
|
epoch_sum_loss |
|
/ len(self.train_dataloader) |
|
* self.cfg.train.gradient_accumulation_step |
|
) |
|
|
|
for key in epoch_losses.keys(): |
|
epoch_losses[key] = ( |
|
epoch_losses[key] |
|
/ len(self.train_dataloader) |
|
* self.cfg.train.gradient_accumulation_step |
|
) |
|
|
|
return epoch_sum_loss, epoch_losses |
|
|
|
@torch.inference_mode() |
|
def _valid_epoch(self): |
|
r"""Testing epoch. Should return average loss of a batch (sample) over |
|
one epoch. See ``train_loop`` for usage. |
|
""" |
|
if isinstance(self.model, dict): |
|
for key in self.model.keys(): |
|
self.model[key].eval() |
|
else: |
|
self.model.eval() |
|
|
|
epoch_sum_loss = 0.0 |
|
epoch_losses = dict() |
|
for batch in tqdm( |
|
self.valid_dataloader, |
|
desc=f"Validating Epoch {self.epoch}", |
|
unit="batch", |
|
colour="GREEN", |
|
leave=False, |
|
dynamic_ncols=True, |
|
smoothing=0.04, |
|
disable=not self.accelerator.is_main_process, |
|
): |
|
total_loss, valid_losses, valid_stats = self._valid_step(batch) |
|
epoch_sum_loss += total_loss |
|
if isinstance(valid_losses, dict): |
|
for key, value in valid_losses.items(): |
|
if key not in epoch_losses.keys(): |
|
epoch_losses[key] = value |
|
else: |
|
epoch_losses[key] += value |
|
|
|
epoch_sum_loss = epoch_sum_loss / len(self.valid_dataloader) |
|
for key in epoch_losses.keys(): |
|
epoch_losses[key] = epoch_losses[key] / len(self.valid_dataloader) |
|
|
|
self.accelerator.wait_for_everyone() |
|
|
|
return epoch_sum_loss, epoch_losses |
|
|
|
def _train_step(self): |
|
pass |
|
|
|
def _valid_step(self, batch): |
|
pass |
|
|
|
def _inference(self): |
|
pass |
|
|
|
def _is_valid_pattern(self, directory_name): |
|
directory_name = str(directory_name) |
|
pattern = r"^epoch-\d{4}_step-\d{7}_loss-\d{1}\.\d{6}" |
|
return re.match(pattern, directory_name) is not None |
|
|
|
def _check_basic_configs(self): |
|
if self.cfg.train.gradient_accumulation_step <= 0: |
|
self.logger.fatal("Invalid gradient_accumulation_step value!") |
|
self.logger.error( |
|
f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive." |
|
) |
|
self.accelerator.end_training() |
|
raise ValueError( |
|
f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive." |
|
) |
|
|
|
def __dump_cfg(self, path): |
|
os.makedirs(os.path.dirname(path), exist_ok=True) |
|
json5.dump( |
|
self.cfg, |
|
open(path, "w"), |
|
indent=4, |
|
sort_keys=True, |
|
ensure_ascii=False, |
|
quote_keys=True, |
|
) |
|
|
|
def __check_basic_configs(self): |
|
if self.cfg.train.gradient_accumulation_step <= 0: |
|
self.logger.fatal("Invalid gradient_accumulation_step value!") |
|
self.logger.error( |
|
f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive." |
|
) |
|
self.accelerator.end_training() |
|
raise ValueError( |
|
f"Invalid gradient_accumulation_step value: {self.cfg.train.gradient_accumulation_step}. It should be positive." |
|
) |
|
|
|
|
|
@staticmethod |
|
def __count_parameters(model): |
|
model_param = 0.0 |
|
if isinstance(model, dict): |
|
for key, value in model.items(): |
|
model_param += sum(p.numel() for p in model[key].parameters()) |
|
else: |
|
model_param = sum(p.numel() for p in model.parameters()) |
|
return model_param |
|
|
|
def _build_speaker_lut(self): |
|
|
|
if not os.path.exists(os.path.join(self.exp_dir, self.cfg.preprocess.spk2id)): |
|
speakers = {} |
|
else: |
|
with open( |
|
os.path.join(self.exp_dir, self.cfg.preprocess.spk2id), "r" |
|
) as speaker_file: |
|
speakers = json.load(speaker_file) |
|
for dataset in self.cfg.dataset: |
|
speaker_lut_path = os.path.join( |
|
self.cfg.preprocess.processed_dir, dataset, self.cfg.preprocess.spk2id |
|
) |
|
with open(speaker_lut_path, "r") as speaker_lut_path: |
|
singer_lut = json.load(speaker_lut_path) |
|
for singer in singer_lut.keys(): |
|
if singer not in speakers: |
|
speakers[singer] = len(speakers) |
|
with open( |
|
os.path.join(self.exp_dir, self.cfg.preprocess.spk2id), "w" |
|
) as speaker_file: |
|
json.dump(speakers, speaker_file, indent=4, ensure_ascii=False) |
|
print( |
|
"speakers have been dumped to {}".format( |
|
os.path.join(self.exp_dir, self.cfg.preprocess.spk2id) |
|
) |
|
) |
|
return speakers |
|
|
|
def _build_utt2spk_dict(self): |
|
|
|
utt2spk = {} |
|
if not os.path.exists(os.path.join(self.exp_dir, self.cfg.preprocess.utt2spk)): |
|
utt2spk = {} |
|
else: |
|
with open( |
|
os.path.join(self.exp_dir, self.cfg.preprocess.utt2spk), "r" |
|
) as utt2spk_file: |
|
for line in utt2spk_file.readlines(): |
|
utt, spk = line.strip().split("\t") |
|
utt2spk[utt] = spk |
|
for dataset in self.cfg.dataset: |
|
utt2spk_dict_path = os.path.join( |
|
self.cfg.preprocess.processed_dir, dataset, self.cfg.preprocess.utt2spk |
|
) |
|
with open(utt2spk_dict_path, "r") as utt2spk_dict: |
|
for line in utt2spk_dict.readlines(): |
|
utt, spk = line.strip().split("\t") |
|
if utt not in utt2spk.keys(): |
|
utt2spk[utt] = spk |
|
with open( |
|
os.path.join(self.exp_dir, self.cfg.preprocess.utt2spk), "w" |
|
) as utt2spk_file: |
|
for utt, spk in utt2spk.items(): |
|
utt2spk_file.write(utt + "\t" + spk + "\n") |
|
print( |
|
"utterance and speaker mapper have been dumped to {}".format( |
|
os.path.join(self.exp_dir, self.cfg.preprocess.utt2spk) |
|
) |
|
) |
|
return utt2spk |
|
|
|
def _save_phone_symbols_file_to_exp_path(self): |
|
phone_symbols_file = os.path.join( |
|
self.cfg.preprocess.processed_dir, |
|
self.cfg.dataset[0], |
|
self.cfg.preprocess.symbols_dict, |
|
) |
|
phone_symbols_file_to_exp_path = os.path.join( |
|
self.exp_dir, self.cfg.preprocess.symbols_dict |
|
) |
|
shutil.copy(phone_symbols_file, phone_symbols_file_to_exp_path) |
|
os.chmod(phone_symbols_file_to_exp_path, 0o666) |
|
print( |
|
"phone symbols been dumped to {}".format( |
|
os.path.join(self.exp_dir, self.cfg.preprocess.symbols_dict) |
|
) |
|
) |
|
|