|
import torch |
|
import gradio as gr |
|
import os |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
model_name = "HuggingFaceTB/SmolLM3-3B" |
|
TOKEN = os.getenv("HF_TOKEN") |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=TOKEN, |
|
) |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name,use_auth_token=TOKEN, |
|
).to(device) |
|
|
|
def generate_text(prompt, max_length, temperature, top_p): |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
outputs = model.generate( |
|
**inputs, |
|
max_new_tokens=max_length, |
|
temperature=0.6, |
|
top_p=0.95, |
|
pad_token_id=tokenizer.eos_token_id |
|
) |
|
return tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
|
|
prompt = "Give me a brief explanation of gravity in simple terms." |
|
messages_think = [ |
|
{"role": "user", "content": prompt} |
|
] |
|
|
|
text = tokenizer.apply_chat_template( |
|
messages_think, |
|
tokenize=False, |
|
add_generation_prompt=True, |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
|
|
|
|
generated_ids = model.generate(**model_inputs, max_new_tokens=32768) |
|
|
|
|
|
output_ids = generated_ids[0][len(model_inputs.input_ids[0]) :] |
|
print(tokenizer.decode(output_ids, skip_special_tokens=True)) |
|
|
|
|
|
interface = gr.Interface( |
|
fn=generate_text, |
|
inputs="text", |
|
outputs="text", |
|
title="SmolLM3-3B Demo", |
|
description="Type your prompt and hit Submit" |
|
) |
|
|
|
if __name__ == "__main__": |
|
interface.launch() |
|
|
|
|