lytest / app.py
skzz's picture
Update app.py
a638ee1 verified
raw
history blame
3.78 kB
import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
class ChatClient:
def __init__(self, model_path):
"""
初始化客户端,加载模型和分词器到 GPU(如果可用)。
"""
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {self.device}")
self.tokenizer = AutoTokenizer.from_pretrained(model_path)
self.model = AutoModelForCausalLM.from_pretrained(model_path).to(self.device)
self.model.eval() # 设置为评估模式
async def chat_completion(self, messages, max_tokens, stream=False, temperature=1.0, top_p=1.0):
"""
生成对话回复。
"""
# 将所有输入消息合并为一个字符串
input_text = messages
print(input_text)
# 使用分词器处理输入文本
inputs = self.tokenizer(input_text, return_tensors='pt').to(self.device)
# 设置生成的参数
gen_kwargs = {
"max_length": inputs['input_ids'].shape[1] + max_tokens,
"temperature": temperature,
"top_p": top_p,
"do_sample": True
}
# 使用生成器生成文本
output_sequences = self.model.generate(**inputs, **gen_kwargs)
# 解码生成的文本
# result_text = self.tokenizer.decode(output_sequences[0], skip_special_tokens=True)
# yield result_text
# 解码生成的文本
for sequence in output_sequences:
result_text = self.tokenizer.decode(sequence, skip_special_tokens=True)
await anyio.sleep(0) # Yield control, simulating asynchronous operation
yield result_text
# 创建客户端实例,指定模型路径
model_path = 'model/v3/'
client = ChatClient(model_path)
async def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
# messages = [{"role": "system", "content": system_message}]
#
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
#
# messages.append({"role": "user", "content": message})
messages = system_message + message
response = ""
async for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
# print(message)
# token = message
# #token = message.choices[0].delta.content
# response += token
# yield response
yield message
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="Yahoo!ショッピングについての質問を回答してください。", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
)
if __name__ == "__main__":
demo.launch()