|
import gradio as gr |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
class ChatClient: |
|
def __init__(self, model_path): |
|
""" |
|
初始化客户端,加载模型和分词器到 GPU(如果可用)。 |
|
""" |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
print(f"Using device: {self.device}") |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(model_path) |
|
self.model = AutoModelForCausalLM.from_pretrained(model_path).to(self.device) |
|
self.model.eval() |
|
|
|
async def chat_completion(self, messages, max_tokens, stream=False, temperature=1.0, top_p=1.0): |
|
""" |
|
生成对话回复。 |
|
""" |
|
|
|
input_text = messages |
|
print(input_text) |
|
|
|
inputs = self.tokenizer(input_text, return_tensors='pt').to(self.device) |
|
|
|
|
|
gen_kwargs = { |
|
"max_length": inputs['input_ids'].shape[1] + max_tokens, |
|
"temperature": temperature, |
|
"top_p": top_p, |
|
"do_sample": True |
|
} |
|
|
|
|
|
output_sequences = self.model.generate(**inputs, **gen_kwargs) |
|
|
|
|
|
|
|
|
|
|
|
|
|
for sequence in output_sequences: |
|
result_text = self.tokenizer.decode(sequence, skip_special_tokens=True) |
|
await anyio.sleep(0) |
|
yield result_text |
|
|
|
|
|
model_path = 'model/v3/' |
|
client = ChatClient(model_path) |
|
|
|
|
|
|
|
|
|
|
|
|
|
async def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
messages = system_message + message |
|
|
|
|
|
response = "" |
|
|
|
async for message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
yield message |
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="Yahoo!ショッピングについての質問を回答してください。", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=1024, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.1, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|