Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
gradio 5.0.1
Browse files
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: πποΈ
|
|
4 |
colorFrom: red
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: mit
|
|
|
4 |
colorFrom: red
|
5 |
colorTo: pink
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 5.0.1
|
8 |
app_file: app.py
|
9 |
pinned: true
|
10 |
license: mit
|
app.py
CHANGED
@@ -2,22 +2,18 @@ import argparse
|
|
2 |
import json
|
3 |
import os
|
4 |
import re
|
5 |
-
import tempfile
|
6 |
-
from pathlib import Path
|
7 |
|
|
|
8 |
import librosa
|
9 |
import numpy as np
|
10 |
import torch
|
11 |
-
from gradio import FileData
|
12 |
from torch import no_grad, LongTensor
|
|
|
13 |
import commons
|
14 |
import utils
|
15 |
-
|
16 |
-
import gradio.utils as gr_utils
|
17 |
-
import gradio_client.utils as gr_processing_utils
|
18 |
from models import SynthesizerTrn
|
19 |
from text import text_to_sequence, _clean_text
|
20 |
-
from mel_processing import spectrogram_torch
|
21 |
|
22 |
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
|
23 |
|
@@ -59,9 +55,6 @@ def create_vc_fn(model, hps, speaker_ids):
|
|
59 |
if input_audio is None:
|
60 |
return "You need to upload an audio", None
|
61 |
sampling_rate, audio = input_audio
|
62 |
-
duration = audio.shape[0] / sampling_rate
|
63 |
-
if limitation and duration > 30:
|
64 |
-
return "Error: Audio is too long", None
|
65 |
original_speaker_id = speaker_ids[original_speaker]
|
66 |
target_speaker_id = speaker_ids[target_speaker]
|
67 |
|
@@ -92,9 +85,6 @@ def create_soft_vc_fn(model, hps, speaker_ids):
|
|
92 |
if input_audio is None:
|
93 |
return "You need to upload an audio", None
|
94 |
sampling_rate, audio = input_audio
|
95 |
-
duration = audio.shape[0] / sampling_rate
|
96 |
-
if limitation and duration > 30:
|
97 |
-
return "Error: Audio is too long", None
|
98 |
target_speaker_id = speaker_ids[target_speaker]
|
99 |
|
100 |
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
@@ -186,12 +176,12 @@ if __name__ == '__main__':
|
|
186 |
to_symbol_fn) in enumerate(models_tts):
|
187 |
with gr.TabItem(f"model{i}"):
|
188 |
with gr.Column():
|
189 |
-
cover_markdown = f"![cover](file
|
190 |
gr.Markdown(f"## {name}\n\n"
|
191 |
f"{cover_markdown}"
|
192 |
f"model author: {author}\n\n"
|
193 |
f"language: {lang}")
|
194 |
-
tts_input1 = gr.TextArea(label="Text (150
|
195 |
elem_id=f"tts-input{i}")
|
196 |
tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
|
197 |
type="index", value=speakers[0])
|
@@ -237,7 +227,7 @@ if __name__ == '__main__':
|
|
237 |
with gr.Tabs():
|
238 |
for i, (name, author, cover_path, speakers, vc_fn) in enumerate(models_vc):
|
239 |
with gr.TabItem(f"model{i}"):
|
240 |
-
cover_markdown = f"![cover](file
|
241 |
gr.Markdown(f"## {name}\n\n"
|
242 |
f"{cover_markdown}"
|
243 |
f"model author: {author}")
|
@@ -245,7 +235,8 @@ if __name__ == '__main__':
|
|
245 |
value=speakers[0])
|
246 |
vc_input2 = gr.Dropdown(label="Target Speaker", choices=speakers, type="index",
|
247 |
value=speakers[min(len(speakers) - 1, 1)])
|
248 |
-
vc_input3 = gr.Audio(label="Input Audio
|
|
|
249 |
vc_submit = gr.Button("Convert", variant="primary")
|
250 |
vc_output1 = gr.Textbox(label="Output Message")
|
251 |
vc_output2 = gr.Audio(label="Output Audio", elem_id=f"vc-audio{i}")
|
@@ -255,13 +246,14 @@ if __name__ == '__main__':
|
|
255 |
with gr.Tabs():
|
256 |
for i, (name, author, cover_path, speakers, soft_vc_fn) in enumerate(models_soft_vc):
|
257 |
with gr.TabItem(f"model{i}"):
|
258 |
-
cover_markdown = f"![cover](file
|
259 |
gr.Markdown(f"## {name}\n\n"
|
260 |
f"{cover_markdown}"
|
261 |
f"model author: {author}")
|
262 |
vc_input1 = gr.Dropdown(label="Target Speaker", choices=speakers, type="index",
|
263 |
value=speakers[0])
|
264 |
-
vc_input2 = gr.Audio(label="Input Audio
|
|
|
265 |
vc_submit = gr.Button("Convert", variant="primary")
|
266 |
vc_output1 = gr.Textbox(label="Output Message")
|
267 |
vc_output2 = gr.Audio(label="Output Audio", elem_id=f"svc-audio{i}")
|
|
|
2 |
import json
|
3 |
import os
|
4 |
import re
|
|
|
|
|
5 |
|
6 |
+
import gradio as gr
|
7 |
import librosa
|
8 |
import numpy as np
|
9 |
import torch
|
|
|
10 |
from torch import no_grad, LongTensor
|
11 |
+
|
12 |
import commons
|
13 |
import utils
|
14 |
+
from mel_processing import spectrogram_torch
|
|
|
|
|
15 |
from models import SynthesizerTrn
|
16 |
from text import text_to_sequence, _clean_text
|
|
|
17 |
|
18 |
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
|
19 |
|
|
|
55 |
if input_audio is None:
|
56 |
return "You need to upload an audio", None
|
57 |
sampling_rate, audio = input_audio
|
|
|
|
|
|
|
58 |
original_speaker_id = speaker_ids[original_speaker]
|
59 |
target_speaker_id = speaker_ids[target_speaker]
|
60 |
|
|
|
85 |
if input_audio is None:
|
86 |
return "You need to upload an audio", None
|
87 |
sampling_rate, audio = input_audio
|
|
|
|
|
|
|
88 |
target_speaker_id = speaker_ids[target_speaker]
|
89 |
|
90 |
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
|
|
176 |
to_symbol_fn) in enumerate(models_tts):
|
177 |
with gr.TabItem(f"model{i}"):
|
178 |
with gr.Column():
|
179 |
+
cover_markdown = f"![cover](gradio_api/file={cover_path})\n\n" if cover_path else ""
|
180 |
gr.Markdown(f"## {name}\n\n"
|
181 |
f"{cover_markdown}"
|
182 |
f"model author: {author}\n\n"
|
183 |
f"language: {lang}")
|
184 |
+
tts_input1 = gr.TextArea(label="Text (150 chars limitation)", value=example,
|
185 |
elem_id=f"tts-input{i}")
|
186 |
tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
|
187 |
type="index", value=speakers[0])
|
|
|
227 |
with gr.Tabs():
|
228 |
for i, (name, author, cover_path, speakers, vc_fn) in enumerate(models_vc):
|
229 |
with gr.TabItem(f"model{i}"):
|
230 |
+
cover_markdown = f"![cover](gradio_api/file={cover_path})\n\n" if cover_path else ""
|
231 |
gr.Markdown(f"## {name}\n\n"
|
232 |
f"{cover_markdown}"
|
233 |
f"model author: {author}")
|
|
|
235 |
value=speakers[0])
|
236 |
vc_input2 = gr.Dropdown(label="Target Speaker", choices=speakers, type="index",
|
237 |
value=speakers[min(len(speakers) - 1, 1)])
|
238 |
+
vc_input3 = gr.Audio(label="Input Audio",
|
239 |
+
max_length=30 if limitation else None)
|
240 |
vc_submit = gr.Button("Convert", variant="primary")
|
241 |
vc_output1 = gr.Textbox(label="Output Message")
|
242 |
vc_output2 = gr.Audio(label="Output Audio", elem_id=f"vc-audio{i}")
|
|
|
246 |
with gr.Tabs():
|
247 |
for i, (name, author, cover_path, speakers, soft_vc_fn) in enumerate(models_soft_vc):
|
248 |
with gr.TabItem(f"model{i}"):
|
249 |
+
cover_markdown = f"![cover](gradio_api/file={cover_path})\n\n" if cover_path else ""
|
250 |
gr.Markdown(f"## {name}\n\n"
|
251 |
f"{cover_markdown}"
|
252 |
f"model author: {author}")
|
253 |
vc_input1 = gr.Dropdown(label="Target Speaker", choices=speakers, type="index",
|
254 |
value=speakers[0])
|
255 |
+
vc_input2 = gr.Audio(label="Input Audio",
|
256 |
+
max_length=30 if limitation else None)
|
257 |
vc_submit = gr.Button("Convert", variant="primary")
|
258 |
vc_output1 = gr.Textbox(label="Output Message")
|
259 |
vc_output2 = gr.Audio(label="Output Audio", elem_id=f"svc-audio{i}")
|