skylord commited on
Commit
2a5c982
·
verified ·
1 Parent(s): 7f08352

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +4 -40
app.py CHANGED
@@ -1,44 +1,8 @@
1
  from fastapi import FastAPI
2
  import gradio as gr
3
- import uvicorn
4
-
5
- from transformers import pipeline
6
- from gradio.components import Textbox
7
-
8
  app = FastAPI()
9
-
10
- # Load the sentiment analysis pipeline with DistilBERT
11
- distilbert_pipeline = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
12
- label_map = {"POSITIVE":"OTHER", "NEGATIVE":"SENSITIVE"}
13
-
14
- input1 = Textbox(lines=2, placeholder="Type your text here...")
15
-
16
  @app.get("/")
17
- async def root():
18
- def predict_sentiment(text):
19
- """
20
- Predicts the sentiment of the input text using DistilBERT.
21
- :param text: str, input text to analyze.
22
- :return: str, predicted sentiment and confidence score.
23
- """
24
- result = distilbert_pipeline(text)[0]
25
- label = label_map[result['label']]
26
- score = result['score']
27
- return f"TAG: {label}, Confidence: {score:.2f}"
28
-
29
- # Create a Gradio interface
30
- text_input = gr.Interface(fn=predict_sentiment,
31
- inputs=input1,
32
- outputs="text",
33
- title="Talk2Loop Sensitive statement tags",
34
- description="This model predicts the sensitivity of the input text. Enter a sentence to see if it's sensitive or not.")
35
-
36
- return text_input.launch(share=True, host="0.0.0.0", port=8000)
37
-
38
- # Launch the interface
39
- #app = gr.mount_gradio_app(app, text_input, path="/")
40
-
41
- if __name__== "__main__":
42
- uvicorn.run(app, host="0.0.0.0", port=8000)
43
-
44
- # iface.launch(port=8000)
 
1
  from fastapi import FastAPI
2
  import gradio as gr
 
 
 
 
 
3
  app = FastAPI()
 
 
 
 
 
 
 
4
  @app.get("/")
5
+ def read_main():
6
+ return {"message": "This is your main app"}
7
+ io = gr.Interface(lambda x: "Hello, " + x + "!", "textbox", "textbox")
8
+ app = gr.mount_gradio_app(app, io, path="/gradio")