Spaces:
Runtime error
Runtime error
import logging | |
from typing import Optional, List, Tuple, Set | |
from presidio_analyzer import ( | |
RecognizerResult, | |
LocalRecognizer, | |
AnalysisExplanation, | |
) | |
from presidio_analyzer.nlp_engine import NlpArtifacts | |
from presidio_analyzer.predefined_recognizers.spacy_recognizer import SpacyRecognizer | |
logger = logging.getLogger("presidio-analyzer") | |
class CustomSpacyRecognizer(LocalRecognizer): | |
ENTITIES = [ | |
"LOCATION", | |
"PERSON", | |
"NRP", | |
"ORGANIZATION", | |
"DATE_TIME", | |
] | |
DEFAULT_EXPLANATION = "Identified as {} by Spacy's Named Entity Recognition (Privy-trained)" | |
CHECK_LABEL_GROUPS = [ | |
({"LOCATION"}, {"LOC", "LOCATION", "STREET_ADDRESS", "COORDINATE"}), | |
({"PERSON"}, {"PER", "PERSON"}), | |
({"NRP"}, {"NORP", "NRP"}), | |
({"ORGANIZATION"}, {"ORG"}), | |
({"DATE_TIME"}, {"DATE_TIME"}), | |
] | |
MODEL_LANGUAGES = { | |
"en": "beki/en_spacy_pii_distilbert", | |
} | |
PRESIDIO_EQUIVALENCES = { | |
"PER": "PERSON", | |
"LOC": "LOCATION", | |
"ORG": "ORGANIZATION", | |
"NROP": "NRP", | |
"DATE_TIME": "DATE_TIME", | |
} | |
def __init__( | |
self, | |
supported_language: str = "en", | |
supported_entities: Optional[List[str]] = None, | |
check_label_groups: Optional[Tuple[Set, Set]] = None, | |
context: Optional[List[str]] = None, | |
ner_strength: float = 0.85, | |
): | |
self.ner_strength = ner_strength | |
self.check_label_groups = ( | |
check_label_groups if check_label_groups else self.CHECK_LABEL_GROUPS | |
) | |
supported_entities = supported_entities if supported_entities else self.ENTITIES | |
super().__init__( | |
supported_entities=supported_entities, | |
supported_language=supported_language, | |
) | |
def load(self) -> None: | |
"""Load the model, not used. Model is loaded during initialization.""" | |
pass | |
def get_supported_entities(self) -> List[str]: | |
""" | |
Return supported entities by this model. | |
:return: List of the supported entities. | |
""" | |
return self.supported_entities | |
def build_spacy_explanation( | |
self, original_score: float, explanation: str | |
) -> AnalysisExplanation: | |
""" | |
Create explanation for why this result was detected. | |
:param original_score: Score given by this recognizer | |
:param explanation: Explanation string | |
:return: | |
""" | |
explanation = AnalysisExplanation( | |
recognizer=self.__class__.__name__, | |
original_score=original_score, | |
textual_explanation=explanation, | |
) | |
return explanation | |
def analyze(self, text, entities, nlp_artifacts=None): # noqa D102 | |
results = [] | |
if not nlp_artifacts: | |
logger.warning("Skipping SpaCy, nlp artifacts not provided...") | |
return results | |
ner_entities = nlp_artifacts.entities | |
for entity in entities: | |
if entity not in self.supported_entities: | |
continue | |
for ent in ner_entities: | |
if not self.__check_label(entity, ent.label_, self.check_label_groups): | |
continue | |
textual_explanation = self.DEFAULT_EXPLANATION.format( | |
ent.label_) | |
explanation = self.build_spacy_explanation( | |
self.ner_strength, textual_explanation | |
) | |
spacy_result = RecognizerResult( | |
entity_type=entity, | |
start=ent.start_char, | |
end=ent.end_char, | |
score=self.ner_strength, | |
analysis_explanation=explanation, | |
recognition_metadata={ | |
RecognizerResult.RECOGNIZER_NAME_KEY: self.name | |
}, | |
) | |
results.append(spacy_result) | |
return results | |
def __check_label( | |
entity: str, label: str, check_label_groups: Tuple[Set, Set] | |
) -> bool: | |
return any( | |
[entity in egrp and label in lgrp for egrp, lgrp in check_label_groups] | |
) | |