Upload 15 files
Browse files- .gitattributes +1 -35
- .python-version +1 -0
- Dockerfile +27 -0
- main.py +6 -0
- marketing.py +18 -0
- model.bin +3 -0
- ping.py +11 -0
- predict.py +55 -0
- pyproject.toml +16 -0
- readme.md +186 -0
- requirements.txt +3 -0
- train.py +64 -0
- uv.lock +518 -0
- venv +0 -0
- workshop-uv-fastapi.ipynb +1986 -0
.gitattributes
CHANGED
|
@@ -1,35 +1 @@
|
|
| 1 |
-
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
-
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
| 1 |
+
model.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.python-version
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
3.12
|
Dockerfile
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
FROM python:3.12.1-slim-bookworm
|
| 2 |
+
|
| 3 |
+
# Install uv by copying it directly from its container image (much faster and smaller than pip)
|
| 4 |
+
COPY --from=ghcr.io/astral-sh/uv:latest /uv /bin/uv
|
| 5 |
+
|
| 6 |
+
# Install uv (the fast package manager)
|
| 7 |
+
RUN pip install uv
|
| 8 |
+
|
| 9 |
+
# Set the working directory
|
| 10 |
+
WORKDIR /app
|
| 11 |
+
|
| 12 |
+
# Add the virtual environment’s bin directory to PATH so Python tools work globally
|
| 13 |
+
|
| 14 |
+
# Copy dependency files
|
| 15 |
+
COPY pyproject.toml uv.lock ./
|
| 16 |
+
|
| 17 |
+
# Install dependencies from the lock file
|
| 18 |
+
RUN uv sync --frozen --no-cache
|
| 19 |
+
|
| 20 |
+
# Copy the FastAPI app and model
|
| 21 |
+
COPY predict.py model.bin ./
|
| 22 |
+
|
| 23 |
+
# Expose port (optional but good practice)
|
| 24 |
+
EXPOSE 9696
|
| 25 |
+
|
| 26 |
+
# Start the FastAPI app with uvicorn
|
| 27 |
+
ENTRYPOINT ["uvicorn", "predict:app", "--host", "0.0.0.0", "--port", "9696"]
|
main.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def main():
|
| 2 |
+
print("Hello from week-5!")
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
if __name__ == "__main__":
|
| 6 |
+
main()
|
marketing.py
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import requests
|
| 2 |
+
|
| 3 |
+
url = 'http://localhost:9696/predict'
|
| 4 |
+
|
| 5 |
+
customer = {
|
| 6 |
+
"lead_source": "paid_ads",
|
| 7 |
+
"number_of_courses_viewed": 5,
|
| 8 |
+
"annual_income": 79450.0
|
| 9 |
+
}
|
| 10 |
+
|
| 11 |
+
response = requests.post(url, json=customer)
|
| 12 |
+
predictions = response.json()
|
| 13 |
+
|
| 14 |
+
print(f"Respose: {predictions}")
|
| 15 |
+
if predictions['converted'] >= 0.5:
|
| 16 |
+
print('Customer is likely to convert, send promo mails')
|
| 17 |
+
else:
|
| 18 |
+
print('Customer is not likely to convert')
|
model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4b078a596e9c0121e2674dc5d962fe368ea88d944c7c431a37b4d10b7fbd80fa
|
| 3 |
+
size 1300
|
ping.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
import uvicorn
|
| 3 |
+
|
| 4 |
+
app = FastAPI(title='ping')
|
| 5 |
+
|
| 6 |
+
@app.get("/ping")
|
| 7 |
+
def ping():
|
| 8 |
+
return "Pong!"
|
| 9 |
+
|
| 10 |
+
if __name__ == "__main__":
|
| 11 |
+
uvicorn.run(app, host="0.0.0.0", port=9696)
|
predict.py
ADDED
|
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from typing import Literal
|
| 3 |
+
import uvicorn
|
| 4 |
+
import pickle
|
| 5 |
+
# for data validation, so the data input by the user is realistic
|
| 6 |
+
from pydantic import BaseModel, Field
|
| 7 |
+
|
| 8 |
+
# request data
|
| 9 |
+
class Customer(BaseModel):
|
| 10 |
+
lead_source: Literal['organic_search', 'social_media', 'paid_ads', 'referral', 'events'] = Field(
|
| 11 |
+
...,
|
| 12 |
+
description="Source of the lead",
|
| 13 |
+
)
|
| 14 |
+
annual_income: float = Field(..., ge=0, le=109899)
|
| 15 |
+
number_of_courses_viewed: int = Field(..., ge=0, le=9)
|
| 16 |
+
|
| 17 |
+
# sample data
|
| 18 |
+
model_config = {
|
| 19 |
+
"json_schema_extra": {
|
| 20 |
+
"examples": [
|
| 21 |
+
{
|
| 22 |
+
# This dictionary below is the sample that will appear in the Swagger UI
|
| 23 |
+
"lead_source": "paid_ads",
|
| 24 |
+
"annual_income": 79276.0, # Note: Use a float (79276.0) for consistency
|
| 25 |
+
"number_of_courses_viewed": 2,
|
| 26 |
+
}
|
| 27 |
+
]
|
| 28 |
+
}
|
| 29 |
+
}
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# response data
|
| 33 |
+
class PredictResponse(BaseModel):
|
| 34 |
+
convert_probability: float
|
| 35 |
+
converted: bool
|
| 36 |
+
|
| 37 |
+
app = FastAPI(title="Customer Conversion Predictor")
|
| 38 |
+
|
| 39 |
+
# Load the pre-trained model
|
| 40 |
+
with open("model.bin", "rb") as f_in:
|
| 41 |
+
pipeline = pickle.load(f_in)
|
| 42 |
+
|
| 43 |
+
# Helper function to get prediction from the loaded model
|
| 44 |
+
def predict_single(customer_dict: dict) -> float:
|
| 45 |
+
return pipeline.predict_proba([customer_dict])[0, 1]
|
| 46 |
+
|
| 47 |
+
# Define the prediction endpoint
|
| 48 |
+
@app.post("/predict", response_model=PredictResponse)
|
| 49 |
+
def predict(customer: Customer):
|
| 50 |
+
prob = predict_single(customer.model_dump())
|
| 51 |
+
return PredictResponse(convert_probability=prob, converted=(prob >= 0.5))
|
| 52 |
+
|
| 53 |
+
# Run the app for local development
|
| 54 |
+
if __name__ == "__main__":
|
| 55 |
+
uvicorn.run("predict:app", host="0.0.0.0", port=9696)
|
pyproject.toml
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[project]
|
| 2 |
+
name = "week-5"
|
| 3 |
+
version = "0.1.0"
|
| 4 |
+
description = "Customer Conversion Predictor"
|
| 5 |
+
readme = "README.md"
|
| 6 |
+
requires-python = ">=3.12"
|
| 7 |
+
dependencies = [
|
| 8 |
+
"fastapi>=0.120.0",
|
| 9 |
+
"scikit-learn>=1.7.2",
|
| 10 |
+
"uvicorn>=0.38.0",
|
| 11 |
+
]
|
| 12 |
+
|
| 13 |
+
[dependency-groups]
|
| 14 |
+
dev = [
|
| 15 |
+
"requests>=2.32.5",
|
| 16 |
+
]
|
readme.md
ADDED
|
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
# Customer Conversion Prediction API
|
| 3 |
+
|
| 4 |
+
[](https://www.python.org/)
|
| 5 |
+
[](https://fastapi.tiangolo.com/)
|
| 6 |
+
[](https://www.docker.com/)
|
| 7 |
+
[](LICENSE)
|
| 8 |
+
|
| 9 |
+
This project demonstrates **deploying a machine learning model with FastAPI and Docker**.
|
| 10 |
+
The model predicts the probability of a lead converting to a customer based on simple features.
|
| 11 |
+
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
## Table of Contents
|
| 15 |
+
|
| 16 |
+
- [Project Overview](#project-overview)
|
| 17 |
+
- [Requirements](#requirements)
|
| 18 |
+
- [Setup & Installation](#setup--installation)
|
| 19 |
+
- [Running Locally](#running-locally)
|
| 20 |
+
- [Docker Deployment](#docker-deployment)
|
| 21 |
+
- [Using the API](#using-the-api)
|
| 22 |
+
- [Project Structure](#project-structure)
|
| 23 |
+
- [License](#license)
|
| 24 |
+
|
| 25 |
+
---
|
| 26 |
+
|
| 27 |
+
## Project Overview
|
| 28 |
+
|
| 29 |
+
We use a pre-trained **Logistic Regression model** with a `DictVectorizer` to process input features:
|
| 30 |
+
|
| 31 |
+
- `lead_source` (categorical: `organic_search`, `social_media`, `paid_ads`, `referral`, `events`)
|
| 32 |
+
- `annual_income` (numeric)
|
| 33 |
+
- `number_of_courses_viewed` (numeric)
|
| 34 |
+
|
| 35 |
+
The model is served via **FastAPI**, and can be deployed using **Docker**.
|
| 36 |
+
|
| 37 |
+
---
|
| 38 |
+
|
| 39 |
+
## Requirements
|
| 40 |
+
|
| 41 |
+
- Python 3.12 or 3.13
|
| 42 |
+
- [FastAPI](https://fastapi.tiangolo.com/)
|
| 43 |
+
- [Uvicorn](https://www.uvicorn.org/)
|
| 44 |
+
- [uv](https://uv-lang.org/) (for dependency management)
|
| 45 |
+
- [Docker](https://www.docker.com/)
|
| 46 |
+
|
| 47 |
+
---
|
| 48 |
+
|
| 49 |
+
## Setup & Installation
|
| 50 |
+
|
| 51 |
+
### 1. Clone the repository
|
| 52 |
+
|
| 53 |
+
```bash
|
| 54 |
+
git clone <your-repo-url>
|
| 55 |
+
cd <repo-folder>
|
| 56 |
+
````
|
| 57 |
+
|
| 58 |
+
### 2. Install dependencies with `uv`
|
| 59 |
+
|
| 60 |
+
```bash
|
| 61 |
+
# Install uv globally if not already
|
| 62 |
+
pip install uv
|
| 63 |
+
|
| 64 |
+
# Initialize uv project
|
| 65 |
+
uv init
|
| 66 |
+
|
| 67 |
+
# Install dependencies from pyproject.toml
|
| 68 |
+
uv sync --frozen
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
### 3. Verify Python and library versions
|
| 72 |
+
|
| 73 |
+
```bash
|
| 74 |
+
python --version
|
| 75 |
+
uv --version
|
| 76 |
+
```
|
| 77 |
+
|
| 78 |
+
---
|
| 79 |
+
|
| 80 |
+
## Running Locally
|
| 81 |
+
|
| 82 |
+
1. Make sure the `model.bin` file is in the project directory.
|
| 83 |
+
2. Run the FastAPI server:
|
| 84 |
+
|
| 85 |
+
```bash
|
| 86 |
+
uvicorn predict:app --host 0.0.0.0 --port 9696
|
| 87 |
+
```
|
| 88 |
+
|
| 89 |
+
3. Open API docs in your browser:
|
| 90 |
+
[http://localhost:9696/docs](http://localhost:9696/docs)
|
| 91 |
+
|
| 92 |
+
---
|
| 93 |
+
|
| 94 |
+
## Docker Deployment
|
| 95 |
+
|
| 96 |
+
### 1. Build Docker image
|
| 97 |
+
|
| 98 |
+
```bash
|
| 99 |
+
docker build -t customer-conversion-prediction .
|
| 100 |
+
```
|
| 101 |
+
|
| 102 |
+
### 2. Run container
|
| 103 |
+
|
| 104 |
+
```bash
|
| 105 |
+
docker run -d -p 9696:9696 customer-conversion-prediction
|
| 106 |
+
```
|
| 107 |
+
|
| 108 |
+
* Access the API at `http://localhost:9696/predict`.
|
| 109 |
+
|
| 110 |
+
### 3. Test API inside Python
|
| 111 |
+
|
| 112 |
+
```python
|
| 113 |
+
import requests
|
| 114 |
+
|
| 115 |
+
url = "http://localhost:9696/predict"
|
| 116 |
+
client = {
|
| 117 |
+
"lead_source": "organic_search",
|
| 118 |
+
"number_of_courses_viewed": 4,
|
| 119 |
+
"annual_income": 80304.0
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
response = requests.post(url, json=client)
|
| 123 |
+
print(response.json())
|
| 124 |
+
```
|
| 125 |
+
|
| 126 |
+
---
|
| 127 |
+
|
| 128 |
+
## Using the API
|
| 129 |
+
|
| 130 |
+
### Request format
|
| 131 |
+
|
| 132 |
+
```json
|
| 133 |
+
{
|
| 134 |
+
"lead_source": "paid_ads",
|
| 135 |
+
"number_of_courses_viewed": 2,
|
| 136 |
+
"annual_income": 79276.0
|
| 137 |
+
}
|
| 138 |
+
```
|
| 139 |
+
|
| 140 |
+
### Response format
|
| 141 |
+
|
| 142 |
+
```json
|
| 143 |
+
{
|
| 144 |
+
"convert_probability": 0.533,
|
| 145 |
+
"converted": true
|
| 146 |
+
}
|
| 147 |
+
```
|
| 148 |
+
|
| 149 |
+
* `convert_probability`: probability of conversion
|
| 150 |
+
* `converted`: True if probability >= 0.5, else False
|
| 151 |
+
|
| 152 |
+
---
|
| 153 |
+
|
| 154 |
+
## Project Structure
|
| 155 |
+
|
| 156 |
+
```
|
| 157 |
+
.
|
| 158 |
+
├── Dockerfile
|
| 159 |
+
├── model.bin
|
| 160 |
+
├── pyproject.toml
|
| 161 |
+
├── uv.lock
|
| 162 |
+
├── predict.py
|
| 163 |
+
└── README.md
|
| 164 |
+
```
|
| 165 |
+
|
| 166 |
+
* `Dockerfile`: defines container image
|
| 167 |
+
* `predict.py`: FastAPI app and prediction code
|
| 168 |
+
* `model.bin`: pre-trained ML model
|
| 169 |
+
* `pyproject.toml` & `uv.lock`: dependency management
|
| 170 |
+
* `README.md`: project documentation
|
| 171 |
+
|
| 172 |
+
---
|
| 173 |
+
|
| 174 |
+
## License
|
| 175 |
+
|
| 176 |
+
This project is for educational purposes for **ML Zoomcamp 2025**.
|
| 177 |
+
|
| 178 |
+
---
|
| 179 |
+
|
| 180 |
+
## References
|
| 181 |
+
|
| 182 |
+
* [FastAPI Documentation](https://fastapi.tiangolo.com/)
|
| 183 |
+
* [Uvicorn Documentation](https://www.uvicorn.org/)
|
| 184 |
+
* [Docker Documentation](https://docs.docker.com/)
|
| 185 |
+
* [Scikit-Learn Pipeline](https://scikit-learn.org/stable/modules/compose.html)
|
| 186 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
venv requirements.txt
|
| 2 |
+
pipenv poetry
|
| 3 |
+
uv
|
train.py
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# coding: utf-8
|
| 3 |
+
|
| 4 |
+
# This is a starter notebook for an updated module 5 of ML Zoomcamp
|
| 5 |
+
#
|
| 6 |
+
# The code is based on the modules 3 and 4. We use the same dataset: [telco customer churn](https://www.kaggle.com/datasets/blastchar/telco-customer-churn)
|
| 7 |
+
|
| 8 |
+
# Import the necessary libraries
|
| 9 |
+
import numpy as np
|
| 10 |
+
import pandas as pd
|
| 11 |
+
import sklearn
|
| 12 |
+
import pickle
|
| 13 |
+
from sklearn.linear_model import LogisticRegression
|
| 14 |
+
from sklearn.pipeline import make_pipeline
|
| 15 |
+
from sklearn.feature_extraction import DictVectorizer
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
print(f'pandas=={pd.__version__}')
|
| 19 |
+
print(f'numpy=={np.__version__}')
|
| 20 |
+
print(f'sklearn=={sklearn.__version__}')
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
# Load the data
|
| 24 |
+
def load_data():
|
| 25 |
+
data_url = "https://raw.githubusercontent.com/alexeygrigorev/datasets/master/course_lead_scoring.csv"
|
| 26 |
+
df = pd.read_csv(data_url)
|
| 27 |
+
return df
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def train_model(df):
|
| 32 |
+
# Preprocessing using DictVectorizer and Training the Logistic Regressio model
|
| 33 |
+
categorical = ['lead_source']
|
| 34 |
+
numeric = ['number_of_courses_viewed', 'annual_income']
|
| 35 |
+
|
| 36 |
+
df[categorical] = df[categorical].fillna('NA')
|
| 37 |
+
df[numeric] = df[numeric].fillna(0)
|
| 38 |
+
|
| 39 |
+
train_dict = df[categorical + numeric].to_dict(orient='records')
|
| 40 |
+
|
| 41 |
+
pipeline = make_pipeline(
|
| 42 |
+
DictVectorizer(),
|
| 43 |
+
LogisticRegression(solver='liblinear')
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
# the target variable
|
| 47 |
+
y_train = df.converted
|
| 48 |
+
|
| 49 |
+
pipeline.fit(train_dict, y_train)
|
| 50 |
+
return pipeline
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
def save_model(filename, model):
|
| 54 |
+
with open(filename, 'wb') as f_out:
|
| 55 |
+
pickle.dump(model, f_out)
|
| 56 |
+
|
| 57 |
+
print(f"Model saved to {filename}")
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
df = load_data()
|
| 61 |
+
pipeline = train_model(df)
|
| 62 |
+
save_model('model.bin', pipeline)
|
| 63 |
+
|
| 64 |
+
|
uv.lock
ADDED
|
@@ -0,0 +1,518 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version = 1
|
| 2 |
+
revision = 3
|
| 3 |
+
requires-python = ">=3.12"
|
| 4 |
+
|
| 5 |
+
[[package]]
|
| 6 |
+
name = "annotated-doc"
|
| 7 |
+
version = "0.0.3"
|
| 8 |
+
source = { registry = "https://pypi.org/simple" }
|
| 9 |
+
sdist = { url = "https://files.pythonhosted.org/packages/d7/a6/dc46877b911e40c00d395771ea710d5e77b6de7bacd5fdcd78d70cc5a48f/annotated_doc-0.0.3.tar.gz", hash = "sha256:e18370014c70187422c33e945053ff4c286f453a984eba84d0dbfa0c935adeda", size = 5535, upload-time = "2025-10-24T14:57:10.718Z" }
|
| 10 |
+
wheels = [
|
| 11 |
+
{ url = "https://files.pythonhosted.org/packages/02/b7/cf592cb5de5cb3bade3357f8d2cf42bf103bbe39f459824b4939fd212911/annotated_doc-0.0.3-py3-none-any.whl", hash = "sha256:348ec6664a76f1fd3be81f43dffbee4c7e8ce931ba71ec67cc7f4ade7fbbb580", size = 5488, upload-time = "2025-10-24T14:57:09.462Z" },
|
| 12 |
+
]
|
| 13 |
+
|
| 14 |
+
[[package]]
|
| 15 |
+
name = "annotated-types"
|
| 16 |
+
version = "0.7.0"
|
| 17 |
+
source = { registry = "https://pypi.org/simple" }
|
| 18 |
+
sdist = { url = "https://files.pythonhosted.org/packages/ee/67/531ea369ba64dcff5ec9c3402f9f51bf748cec26dde048a2f973a4eea7f5/annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89", size = 16081, upload-time = "2024-05-20T21:33:25.928Z" }
|
| 19 |
+
wheels = [
|
| 20 |
+
{ url = "https://files.pythonhosted.org/packages/78/b6/6307fbef88d9b5ee7421e68d78a9f162e0da4900bc5f5793f6d3d0e34fb8/annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53", size = 13643, upload-time = "2024-05-20T21:33:24.1Z" },
|
| 21 |
+
]
|
| 22 |
+
|
| 23 |
+
[[package]]
|
| 24 |
+
name = "anyio"
|
| 25 |
+
version = "4.11.0"
|
| 26 |
+
source = { registry = "https://pypi.org/simple" }
|
| 27 |
+
dependencies = [
|
| 28 |
+
{ name = "idna" },
|
| 29 |
+
{ name = "sniffio" },
|
| 30 |
+
{ name = "typing-extensions", marker = "python_full_version < '3.13'" },
|
| 31 |
+
]
|
| 32 |
+
sdist = { url = "https://files.pythonhosted.org/packages/c6/78/7d432127c41b50bccba979505f272c16cbcadcc33645d5fa3a738110ae75/anyio-4.11.0.tar.gz", hash = "sha256:82a8d0b81e318cc5ce71a5f1f8b5c4e63619620b63141ef8c995fa0db95a57c4", size = 219094, upload-time = "2025-09-23T09:19:12.58Z" }
|
| 33 |
+
wheels = [
|
| 34 |
+
{ url = "https://files.pythonhosted.org/packages/15/b3/9b1a8074496371342ec1e796a96f99c82c945a339cd81a8e73de28b4cf9e/anyio-4.11.0-py3-none-any.whl", hash = "sha256:0287e96f4d26d4149305414d4e3bc32f0dcd0862365a4bddea19d7a1ec38c4fc", size = 109097, upload-time = "2025-09-23T09:19:10.601Z" },
|
| 35 |
+
]
|
| 36 |
+
|
| 37 |
+
[[package]]
|
| 38 |
+
name = "certifi"
|
| 39 |
+
version = "2025.10.5"
|
| 40 |
+
source = { registry = "https://pypi.org/simple" }
|
| 41 |
+
sdist = { url = "https://files.pythonhosted.org/packages/4c/5b/b6ce21586237c77ce67d01dc5507039d444b630dd76611bbca2d8e5dcd91/certifi-2025.10.5.tar.gz", hash = "sha256:47c09d31ccf2acf0be3f701ea53595ee7e0b8fa08801c6624be771df09ae7b43", size = 164519, upload-time = "2025-10-05T04:12:15.808Z" }
|
| 42 |
+
wheels = [
|
| 43 |
+
{ url = "https://files.pythonhosted.org/packages/e4/37/af0d2ef3967ac0d6113837b44a4f0bfe1328c2b9763bd5b1744520e5cfed/certifi-2025.10.5-py3-none-any.whl", hash = "sha256:0f212c2744a9bb6de0c56639a6f68afe01ecd92d91f14ae897c4fe7bbeeef0de", size = 163286, upload-time = "2025-10-05T04:12:14.03Z" },
|
| 44 |
+
]
|
| 45 |
+
|
| 46 |
+
[[package]]
|
| 47 |
+
name = "charset-normalizer"
|
| 48 |
+
version = "3.4.4"
|
| 49 |
+
source = { registry = "https://pypi.org/simple" }
|
| 50 |
+
sdist = { url = "https://files.pythonhosted.org/packages/13/69/33ddede1939fdd074bce5434295f38fae7136463422fe4fd3e0e89b98062/charset_normalizer-3.4.4.tar.gz", hash = "sha256:94537985111c35f28720e43603b8e7b43a6ecfb2ce1d3058bbe955b73404e21a", size = 129418, upload-time = "2025-10-14T04:42:32.879Z" }
|
| 51 |
+
wheels = [
|
| 52 |
+
{ url = "https://files.pythonhosted.org/packages/f3/85/1637cd4af66fa687396e757dec650f28025f2a2f5a5531a3208dc0ec43f2/charset_normalizer-3.4.4-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:0a98e6759f854bd25a58a73fa88833fba3b7c491169f86ce1180c948ab3fd394", size = 208425, upload-time = "2025-10-14T04:40:53.353Z" },
|
| 53 |
+
{ url = "https://files.pythonhosted.org/packages/9d/6a/04130023fef2a0d9c62d0bae2649b69f7b7d8d24ea5536feef50551029df/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b5b290ccc2a263e8d185130284f8501e3e36c5e02750fc6b6bdeb2e9e96f1e25", size = 148162, upload-time = "2025-10-14T04:40:54.558Z" },
|
| 54 |
+
{ url = "https://files.pythonhosted.org/packages/78/29/62328d79aa60da22c9e0b9a66539feae06ca0f5a4171ac4f7dc285b83688/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:74bb723680f9f7a6234dcf67aea57e708ec1fbdf5699fb91dfd6f511b0a320ef", size = 144558, upload-time = "2025-10-14T04:40:55.677Z" },
|
| 55 |
+
{ url = "https://files.pythonhosted.org/packages/86/bb/b32194a4bf15b88403537c2e120b817c61cd4ecffa9b6876e941c3ee38fe/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:f1e34719c6ed0b92f418c7c780480b26b5d9c50349e9a9af7d76bf757530350d", size = 161497, upload-time = "2025-10-14T04:40:57.217Z" },
|
| 56 |
+
{ url = "https://files.pythonhosted.org/packages/19/89/a54c82b253d5b9b111dc74aca196ba5ccfcca8242d0fb64146d4d3183ff1/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:2437418e20515acec67d86e12bf70056a33abdacb5cb1655042f6538d6b085a8", size = 159240, upload-time = "2025-10-14T04:40:58.358Z" },
|
| 57 |
+
{ url = "https://files.pythonhosted.org/packages/c0/10/d20b513afe03acc89ec33948320a5544d31f21b05368436d580dec4e234d/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:11d694519d7f29d6cd09f6ac70028dba10f92f6cdd059096db198c283794ac86", size = 153471, upload-time = "2025-10-14T04:40:59.468Z" },
|
| 58 |
+
{ url = "https://files.pythonhosted.org/packages/61/fa/fbf177b55bdd727010f9c0a3c49eefa1d10f960e5f09d1d887bf93c2e698/charset_normalizer-3.4.4-cp312-cp312-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:ac1c4a689edcc530fc9d9aa11f5774b9e2f33f9a0c6a57864e90908f5208d30a", size = 150864, upload-time = "2025-10-14T04:41:00.623Z" },
|
| 59 |
+
{ url = "https://files.pythonhosted.org/packages/05/12/9fbc6a4d39c0198adeebbde20b619790e9236557ca59fc40e0e3cebe6f40/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:21d142cc6c0ec30d2efee5068ca36c128a30b0f2c53c1c07bd78cb6bc1d3be5f", size = 150647, upload-time = "2025-10-14T04:41:01.754Z" },
|
| 60 |
+
{ url = "https://files.pythonhosted.org/packages/ad/1f/6a9a593d52e3e8c5d2b167daf8c6b968808efb57ef4c210acb907c365bc4/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_armv7l.whl", hash = "sha256:5dbe56a36425d26d6cfb40ce79c314a2e4dd6211d51d6d2191c00bed34f354cc", size = 145110, upload-time = "2025-10-14T04:41:03.231Z" },
|
| 61 |
+
{ url = "https://files.pythonhosted.org/packages/30/42/9a52c609e72471b0fc54386dc63c3781a387bb4fe61c20231a4ebcd58bdd/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:5bfbb1b9acf3334612667b61bd3002196fe2a1eb4dd74d247e0f2a4d50ec9bbf", size = 162839, upload-time = "2025-10-14T04:41:04.715Z" },
|
| 62 |
+
{ url = "https://files.pythonhosted.org/packages/c4/5b/c0682bbf9f11597073052628ddd38344a3d673fda35a36773f7d19344b23/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_riscv64.whl", hash = "sha256:d055ec1e26e441f6187acf818b73564e6e6282709e9bcb5b63f5b23068356a15", size = 150667, upload-time = "2025-10-14T04:41:05.827Z" },
|
| 63 |
+
{ url = "https://files.pythonhosted.org/packages/e4/24/a41afeab6f990cf2daf6cb8c67419b63b48cf518e4f56022230840c9bfb2/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:af2d8c67d8e573d6de5bc30cdb27e9b95e49115cd9baad5ddbd1a6207aaa82a9", size = 160535, upload-time = "2025-10-14T04:41:06.938Z" },
|
| 64 |
+
{ url = "https://files.pythonhosted.org/packages/2a/e5/6a4ce77ed243c4a50a1fecca6aaaab419628c818a49434be428fe24c9957/charset_normalizer-3.4.4-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:780236ac706e66881f3b7f2f32dfe90507a09e67d1d454c762cf642e6e1586e0", size = 154816, upload-time = "2025-10-14T04:41:08.101Z" },
|
| 65 |
+
{ url = "https://files.pythonhosted.org/packages/a8/ef/89297262b8092b312d29cdb2517cb1237e51db8ecef2e9af5edbe7b683b1/charset_normalizer-3.4.4-cp312-cp312-win32.whl", hash = "sha256:5833d2c39d8896e4e19b689ffc198f08ea58116bee26dea51e362ecc7cd3ed26", size = 99694, upload-time = "2025-10-14T04:41:09.23Z" },
|
| 66 |
+
{ url = "https://files.pythonhosted.org/packages/3d/2d/1e5ed9dd3b3803994c155cd9aacb60c82c331bad84daf75bcb9c91b3295e/charset_normalizer-3.4.4-cp312-cp312-win_amd64.whl", hash = "sha256:a79cfe37875f822425b89a82333404539ae63dbdddf97f84dcbc3d339aae9525", size = 107131, upload-time = "2025-10-14T04:41:10.467Z" },
|
| 67 |
+
{ url = "https://files.pythonhosted.org/packages/d0/d9/0ed4c7098a861482a7b6a95603edce4c0d9db2311af23da1fb2b75ec26fc/charset_normalizer-3.4.4-cp312-cp312-win_arm64.whl", hash = "sha256:376bec83a63b8021bb5c8ea75e21c4ccb86e7e45ca4eb81146091b56599b80c3", size = 100390, upload-time = "2025-10-14T04:41:11.915Z" },
|
| 68 |
+
{ url = "https://files.pythonhosted.org/packages/97/45/4b3a1239bbacd321068ea6e7ac28875b03ab8bc0aa0966452db17cd36714/charset_normalizer-3.4.4-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:e1f185f86a6f3403aa2420e815904c67b2f9ebc443f045edd0de921108345794", size = 208091, upload-time = "2025-10-14T04:41:13.346Z" },
|
| 69 |
+
{ url = "https://files.pythonhosted.org/packages/7d/62/73a6d7450829655a35bb88a88fca7d736f9882a27eacdca2c6d505b57e2e/charset_normalizer-3.4.4-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6b39f987ae8ccdf0d2642338faf2abb1862340facc796048b604ef14919e55ed", size = 147936, upload-time = "2025-10-14T04:41:14.461Z" },
|
| 70 |
+
{ url = "https://files.pythonhosted.org/packages/89/c5/adb8c8b3d6625bef6d88b251bbb0d95f8205831b987631ab0c8bb5d937c2/charset_normalizer-3.4.4-cp313-cp313-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:3162d5d8ce1bb98dd51af660f2121c55d0fa541b46dff7bb9b9f86ea1d87de72", size = 144180, upload-time = "2025-10-14T04:41:15.588Z" },
|
| 71 |
+
{ url = "https://files.pythonhosted.org/packages/91/ed/9706e4070682d1cc219050b6048bfd293ccf67b3d4f5a4f39207453d4b99/charset_normalizer-3.4.4-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:81d5eb2a312700f4ecaa977a8235b634ce853200e828fbadf3a9c50bab278328", size = 161346, upload-time = "2025-10-14T04:41:16.738Z" },
|
| 72 |
+
{ url = "https://files.pythonhosted.org/packages/d5/0d/031f0d95e4972901a2f6f09ef055751805ff541511dc1252ba3ca1f80cf5/charset_normalizer-3.4.4-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:5bd2293095d766545ec1a8f612559f6b40abc0eb18bb2f5d1171872d34036ede", size = 158874, upload-time = "2025-10-14T04:41:17.923Z" },
|
| 73 |
+
{ url = "https://files.pythonhosted.org/packages/f5/83/6ab5883f57c9c801ce5e5677242328aa45592be8a00644310a008d04f922/charset_normalizer-3.4.4-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:a8a8b89589086a25749f471e6a900d3f662d1d3b6e2e59dcecf787b1cc3a1894", size = 153076, upload-time = "2025-10-14T04:41:19.106Z" },
|
| 74 |
+
{ url = "https://files.pythonhosted.org/packages/75/1e/5ff781ddf5260e387d6419959ee89ef13878229732732ee73cdae01800f2/charset_normalizer-3.4.4-cp313-cp313-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:bc7637e2f80d8530ee4a78e878bce464f70087ce73cf7c1caf142416923b98f1", size = 150601, upload-time = "2025-10-14T04:41:20.245Z" },
|
| 75 |
+
{ url = "https://files.pythonhosted.org/packages/d7/57/71be810965493d3510a6ca79b90c19e48696fb1ff964da319334b12677f0/charset_normalizer-3.4.4-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:f8bf04158c6b607d747e93949aa60618b61312fe647a6369f88ce2ff16043490", size = 150376, upload-time = "2025-10-14T04:41:21.398Z" },
|
| 76 |
+
{ url = "https://files.pythonhosted.org/packages/e5/d5/c3d057a78c181d007014feb7e9f2e65905a6c4ef182c0ddf0de2924edd65/charset_normalizer-3.4.4-cp313-cp313-musllinux_1_2_armv7l.whl", hash = "sha256:554af85e960429cf30784dd47447d5125aaa3b99a6f0683589dbd27e2f45da44", size = 144825, upload-time = "2025-10-14T04:41:22.583Z" },
|
| 77 |
+
{ url = "https://files.pythonhosted.org/packages/e6/8c/d0406294828d4976f275ffbe66f00266c4b3136b7506941d87c00cab5272/charset_normalizer-3.4.4-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:74018750915ee7ad843a774364e13a3db91682f26142baddf775342c3f5b1133", size = 162583, upload-time = "2025-10-14T04:41:23.754Z" },
|
| 78 |
+
{ url = "https://files.pythonhosted.org/packages/d7/24/e2aa1f18c8f15c4c0e932d9287b8609dd30ad56dbe41d926bd846e22fb8d/charset_normalizer-3.4.4-cp313-cp313-musllinux_1_2_riscv64.whl", hash = "sha256:c0463276121fdee9c49b98908b3a89c39be45d86d1dbaa22957e38f6321d4ce3", size = 150366, upload-time = "2025-10-14T04:41:25.27Z" },
|
| 79 |
+
{ url = "https://files.pythonhosted.org/packages/e4/5b/1e6160c7739aad1e2df054300cc618b06bf784a7a164b0f238360721ab86/charset_normalizer-3.4.4-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:362d61fd13843997c1c446760ef36f240cf81d3ebf74ac62652aebaf7838561e", size = 160300, upload-time = "2025-10-14T04:41:26.725Z" },
|
| 80 |
+
{ url = "https://files.pythonhosted.org/packages/7a/10/f882167cd207fbdd743e55534d5d9620e095089d176d55cb22d5322f2afd/charset_normalizer-3.4.4-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:9a26f18905b8dd5d685d6d07b0cdf98a79f3c7a918906af7cc143ea2e164c8bc", size = 154465, upload-time = "2025-10-14T04:41:28.322Z" },
|
| 81 |
+
{ url = "https://files.pythonhosted.org/packages/89/66/c7a9e1b7429be72123441bfdbaf2bc13faab3f90b933f664db506dea5915/charset_normalizer-3.4.4-cp313-cp313-win32.whl", hash = "sha256:9b35f4c90079ff2e2edc5b26c0c77925e5d2d255c42c74fdb70fb49b172726ac", size = 99404, upload-time = "2025-10-14T04:41:29.95Z" },
|
| 82 |
+
{ url = "https://files.pythonhosted.org/packages/c4/26/b9924fa27db384bdcd97ab83b4f0a8058d96ad9626ead570674d5e737d90/charset_normalizer-3.4.4-cp313-cp313-win_amd64.whl", hash = "sha256:b435cba5f4f750aa6c0a0d92c541fb79f69a387c91e61f1795227e4ed9cece14", size = 107092, upload-time = "2025-10-14T04:41:31.188Z" },
|
| 83 |
+
{ url = "https://files.pythonhosted.org/packages/af/8f/3ed4bfa0c0c72a7ca17f0380cd9e4dd842b09f664e780c13cff1dcf2ef1b/charset_normalizer-3.4.4-cp313-cp313-win_arm64.whl", hash = "sha256:542d2cee80be6f80247095cc36c418f7bddd14f4a6de45af91dfad36d817bba2", size = 100408, upload-time = "2025-10-14T04:41:32.624Z" },
|
| 84 |
+
{ url = "https://files.pythonhosted.org/packages/2a/35/7051599bd493e62411d6ede36fd5af83a38f37c4767b92884df7301db25d/charset_normalizer-3.4.4-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:da3326d9e65ef63a817ecbcc0df6e94463713b754fe293eaa03da99befb9a5bd", size = 207746, upload-time = "2025-10-14T04:41:33.773Z" },
|
| 85 |
+
{ url = "https://files.pythonhosted.org/packages/10/9a/97c8d48ef10d6cd4fcead2415523221624bf58bcf68a802721a6bc807c8f/charset_normalizer-3.4.4-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8af65f14dc14a79b924524b1e7fffe304517b2bff5a58bf64f30b98bbc5079eb", size = 147889, upload-time = "2025-10-14T04:41:34.897Z" },
|
| 86 |
+
{ url = "https://files.pythonhosted.org/packages/10/bf/979224a919a1b606c82bd2c5fa49b5c6d5727aa47b4312bb27b1734f53cd/charset_normalizer-3.4.4-cp314-cp314-manylinux2014_armv7l.manylinux_2_17_armv7l.manylinux_2_31_armv7l.whl", hash = "sha256:74664978bb272435107de04e36db5a9735e78232b85b77d45cfb38f758efd33e", size = 143641, upload-time = "2025-10-14T04:41:36.116Z" },
|
| 87 |
+
{ url = "https://files.pythonhosted.org/packages/ba/33/0ad65587441fc730dc7bd90e9716b30b4702dc7b617e6ba4997dc8651495/charset_normalizer-3.4.4-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:752944c7ffbfdd10c074dc58ec2d5a8a4cd9493b314d367c14d24c17684ddd14", size = 160779, upload-time = "2025-10-14T04:41:37.229Z" },
|
| 88 |
+
{ url = "https://files.pythonhosted.org/packages/67/ed/331d6b249259ee71ddea93f6f2f0a56cfebd46938bde6fcc6f7b9a3d0e09/charset_normalizer-3.4.4-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:d1f13550535ad8cff21b8d757a3257963e951d96e20ec82ab44bc64aeb62a191", size = 159035, upload-time = "2025-10-14T04:41:38.368Z" },
|
| 89 |
+
{ url = "https://files.pythonhosted.org/packages/67/ff/f6b948ca32e4f2a4576aa129d8bed61f2e0543bf9f5f2b7fc3758ed005c9/charset_normalizer-3.4.4-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ecaae4149d99b1c9e7b88bb03e3221956f68fd6d50be2ef061b2381b61d20838", size = 152542, upload-time = "2025-10-14T04:41:39.862Z" },
|
| 90 |
+
{ url = "https://files.pythonhosted.org/packages/16/85/276033dcbcc369eb176594de22728541a925b2632f9716428c851b149e83/charset_normalizer-3.4.4-cp314-cp314-manylinux_2_31_riscv64.manylinux_2_39_riscv64.whl", hash = "sha256:cb6254dc36b47a990e59e1068afacdcd02958bdcce30bb50cc1700a8b9d624a6", size = 149524, upload-time = "2025-10-14T04:41:41.319Z" },
|
| 91 |
+
{ url = "https://files.pythonhosted.org/packages/9e/f2/6a2a1f722b6aba37050e626530a46a68f74e63683947a8acff92569f979a/charset_normalizer-3.4.4-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:c8ae8a0f02f57a6e61203a31428fa1d677cbe50c93622b4149d5c0f319c1d19e", size = 150395, upload-time = "2025-10-14T04:41:42.539Z" },
|
| 92 |
+
{ url = "https://files.pythonhosted.org/packages/60/bb/2186cb2f2bbaea6338cad15ce23a67f9b0672929744381e28b0592676824/charset_normalizer-3.4.4-cp314-cp314-musllinux_1_2_armv7l.whl", hash = "sha256:47cc91b2f4dd2833fddaedd2893006b0106129d4b94fdb6af1f4ce5a9965577c", size = 143680, upload-time = "2025-10-14T04:41:43.661Z" },
|
| 93 |
+
{ url = "https://files.pythonhosted.org/packages/7d/a5/bf6f13b772fbb2a90360eb620d52ed8f796f3c5caee8398c3b2eb7b1c60d/charset_normalizer-3.4.4-cp314-cp314-musllinux_1_2_ppc64le.whl", hash = "sha256:82004af6c302b5d3ab2cfc4cc5f29db16123b1a8417f2e25f9066f91d4411090", size = 162045, upload-time = "2025-10-14T04:41:44.821Z" },
|
| 94 |
+
{ url = "https://files.pythonhosted.org/packages/df/c5/d1be898bf0dc3ef9030c3825e5d3b83f2c528d207d246cbabe245966808d/charset_normalizer-3.4.4-cp314-cp314-musllinux_1_2_riscv64.whl", hash = "sha256:2b7d8f6c26245217bd2ad053761201e9f9680f8ce52f0fcd8d0755aeae5b2152", size = 149687, upload-time = "2025-10-14T04:41:46.442Z" },
|
| 95 |
+
{ url = "https://files.pythonhosted.org/packages/a5/42/90c1f7b9341eef50c8a1cb3f098ac43b0508413f33affd762855f67a410e/charset_normalizer-3.4.4-cp314-cp314-musllinux_1_2_s390x.whl", hash = "sha256:799a7a5e4fb2d5898c60b640fd4981d6a25f1c11790935a44ce38c54e985f828", size = 160014, upload-time = "2025-10-14T04:41:47.631Z" },
|
| 96 |
+
{ url = "https://files.pythonhosted.org/packages/76/be/4d3ee471e8145d12795ab655ece37baed0929462a86e72372fd25859047c/charset_normalizer-3.4.4-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:99ae2cffebb06e6c22bdc25801d7b30f503cc87dbd283479e7b606f70aff57ec", size = 154044, upload-time = "2025-10-14T04:41:48.81Z" },
|
| 97 |
+
{ url = "https://files.pythonhosted.org/packages/b0/6f/8f7af07237c34a1defe7defc565a9bc1807762f672c0fde711a4b22bf9c0/charset_normalizer-3.4.4-cp314-cp314-win32.whl", hash = "sha256:f9d332f8c2a2fcbffe1378594431458ddbef721c1769d78e2cbc06280d8155f9", size = 99940, upload-time = "2025-10-14T04:41:49.946Z" },
|
| 98 |
+
{ url = "https://files.pythonhosted.org/packages/4b/51/8ade005e5ca5b0d80fb4aff72a3775b325bdc3d27408c8113811a7cbe640/charset_normalizer-3.4.4-cp314-cp314-win_amd64.whl", hash = "sha256:8a6562c3700cce886c5be75ade4a5db4214fda19fede41d9792d100288d8f94c", size = 107104, upload-time = "2025-10-14T04:41:51.051Z" },
|
| 99 |
+
{ url = "https://files.pythonhosted.org/packages/da/5f/6b8f83a55bb8278772c5ae54a577f3099025f9ade59d0136ac24a0df4bde/charset_normalizer-3.4.4-cp314-cp314-win_arm64.whl", hash = "sha256:de00632ca48df9daf77a2c65a484531649261ec9f25489917f09e455cb09ddb2", size = 100743, upload-time = "2025-10-14T04:41:52.122Z" },
|
| 100 |
+
{ url = "https://files.pythonhosted.org/packages/0a/4c/925909008ed5a988ccbb72dcc897407e5d6d3bd72410d69e051fc0c14647/charset_normalizer-3.4.4-py3-none-any.whl", hash = "sha256:7a32c560861a02ff789ad905a2fe94e3f840803362c84fecf1851cb4cf3dc37f", size = 53402, upload-time = "2025-10-14T04:42:31.76Z" },
|
| 101 |
+
]
|
| 102 |
+
|
| 103 |
+
[[package]]
|
| 104 |
+
name = "click"
|
| 105 |
+
version = "8.3.0"
|
| 106 |
+
source = { registry = "https://pypi.org/simple" }
|
| 107 |
+
dependencies = [
|
| 108 |
+
{ name = "colorama", marker = "sys_platform == 'win32'" },
|
| 109 |
+
]
|
| 110 |
+
sdist = { url = "https://files.pythonhosted.org/packages/46/61/de6cd827efad202d7057d93e0fed9294b96952e188f7384832791c7b2254/click-8.3.0.tar.gz", hash = "sha256:e7b8232224eba16f4ebe410c25ced9f7875cb5f3263ffc93cc3e8da705e229c4", size = 276943, upload-time = "2025-09-18T17:32:23.696Z" }
|
| 111 |
+
wheels = [
|
| 112 |
+
{ url = "https://files.pythonhosted.org/packages/db/d3/9dcc0f5797f070ec8edf30fbadfb200e71d9db6b84d211e3b2085a7589a0/click-8.3.0-py3-none-any.whl", hash = "sha256:9b9f285302c6e3064f4330c05f05b81945b2a39544279343e6e7c5f27a9baddc", size = 107295, upload-time = "2025-09-18T17:32:22.42Z" },
|
| 113 |
+
]
|
| 114 |
+
|
| 115 |
+
[[package]]
|
| 116 |
+
name = "colorama"
|
| 117 |
+
version = "0.4.6"
|
| 118 |
+
source = { registry = "https://pypi.org/simple" }
|
| 119 |
+
sdist = { url = "https://files.pythonhosted.org/packages/d8/53/6f443c9a4a8358a93a6792e2acffb9d9d5cb0a5cfd8802644b7b1c9a02e4/colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44", size = 27697, upload-time = "2022-10-25T02:36:22.414Z" }
|
| 120 |
+
wheels = [
|
| 121 |
+
{ url = "https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6", size = 25335, upload-time = "2022-10-25T02:36:20.889Z" },
|
| 122 |
+
]
|
| 123 |
+
|
| 124 |
+
[[package]]
|
| 125 |
+
name = "fastapi"
|
| 126 |
+
version = "0.120.0"
|
| 127 |
+
source = { registry = "https://pypi.org/simple" }
|
| 128 |
+
dependencies = [
|
| 129 |
+
{ name = "annotated-doc" },
|
| 130 |
+
{ name = "pydantic" },
|
| 131 |
+
{ name = "starlette" },
|
| 132 |
+
{ name = "typing-extensions" },
|
| 133 |
+
]
|
| 134 |
+
sdist = { url = "https://files.pythonhosted.org/packages/f7/0e/7f29e8f7219e4526747db182e1afb5a4b6abc3201768fb38d81fa2536241/fastapi-0.120.0.tar.gz", hash = "sha256:6ce2c1cfb7000ac14ffd8ddb2bc12e62d023a36c20ec3710d09d8e36fab177a0", size = 337603, upload-time = "2025-10-23T20:56:34.743Z" }
|
| 135 |
+
wheels = [
|
| 136 |
+
{ url = "https://files.pythonhosted.org/packages/1d/60/7a639ceaba54aec4e1d5676498c568abc654b95762d456095b6cb529b1ca/fastapi-0.120.0-py3-none-any.whl", hash = "sha256:84009182e530c47648da2f07eb380b44b69889a4acfd9e9035ee4605c5cfc469", size = 108243, upload-time = "2025-10-23T20:56:33.281Z" },
|
| 137 |
+
]
|
| 138 |
+
|
| 139 |
+
[[package]]
|
| 140 |
+
name = "h11"
|
| 141 |
+
version = "0.16.0"
|
| 142 |
+
source = { registry = "https://pypi.org/simple" }
|
| 143 |
+
sdist = { url = "https://files.pythonhosted.org/packages/01/ee/02a2c011bdab74c6fb3c75474d40b3052059d95df7e73351460c8588d963/h11-0.16.0.tar.gz", hash = "sha256:4e35b956cf45792e4caa5885e69fba00bdbc6ffafbfa020300e549b208ee5ff1", size = 101250, upload-time = "2025-04-24T03:35:25.427Z" }
|
| 144 |
+
wheels = [
|
| 145 |
+
{ url = "https://files.pythonhosted.org/packages/04/4b/29cac41a4d98d144bf5f6d33995617b185d14b22401f75ca86f384e87ff1/h11-0.16.0-py3-none-any.whl", hash = "sha256:63cf8bbe7522de3bf65932fda1d9c2772064ffb3dae62d55932da54b31cb6c86", size = 37515, upload-time = "2025-04-24T03:35:24.344Z" },
|
| 146 |
+
]
|
| 147 |
+
|
| 148 |
+
[[package]]
|
| 149 |
+
name = "idna"
|
| 150 |
+
version = "3.11"
|
| 151 |
+
source = { registry = "https://pypi.org/simple" }
|
| 152 |
+
sdist = { url = "https://files.pythonhosted.org/packages/6f/6d/0703ccc57f3a7233505399edb88de3cbd678da106337b9fcde432b65ed60/idna-3.11.tar.gz", hash = "sha256:795dafcc9c04ed0c1fb032c2aa73654d8e8c5023a7df64a53f39190ada629902", size = 194582, upload-time = "2025-10-12T14:55:20.501Z" }
|
| 153 |
+
wheels = [
|
| 154 |
+
{ url = "https://files.pythonhosted.org/packages/0e/61/66938bbb5fc52dbdf84594873d5b51fb1f7c7794e9c0f5bd885f30bc507b/idna-3.11-py3-none-any.whl", hash = "sha256:771a87f49d9defaf64091e6e6fe9c18d4833f140bd19464795bc32d966ca37ea", size = 71008, upload-time = "2025-10-12T14:55:18.883Z" },
|
| 155 |
+
]
|
| 156 |
+
|
| 157 |
+
[[package]]
|
| 158 |
+
name = "joblib"
|
| 159 |
+
version = "1.5.2"
|
| 160 |
+
source = { registry = "https://pypi.org/simple" }
|
| 161 |
+
sdist = { url = "https://files.pythonhosted.org/packages/e8/5d/447af5ea094b9e4c4054f82e223ada074c552335b9b4b2d14bd9b35a67c4/joblib-1.5.2.tar.gz", hash = "sha256:3faa5c39054b2f03ca547da9b2f52fde67c06240c31853f306aea97f13647b55", size = 331077, upload-time = "2025-08-27T12:15:46.575Z" }
|
| 162 |
+
wheels = [
|
| 163 |
+
{ url = "https://files.pythonhosted.org/packages/1e/e8/685f47e0d754320684db4425a0967f7d3fa70126bffd76110b7009a0090f/joblib-1.5.2-py3-none-any.whl", hash = "sha256:4e1f0bdbb987e6d843c70cf43714cb276623def372df3c22fe5266b2670bc241", size = 308396, upload-time = "2025-08-27T12:15:45.188Z" },
|
| 164 |
+
]
|
| 165 |
+
|
| 166 |
+
[[package]]
|
| 167 |
+
name = "numpy"
|
| 168 |
+
version = "2.3.4"
|
| 169 |
+
source = { registry = "https://pypi.org/simple" }
|
| 170 |
+
sdist = { url = "https://files.pythonhosted.org/packages/b5/f4/098d2270d52b41f1bd7db9fc288aaa0400cb48c2a3e2af6fa365d9720947/numpy-2.3.4.tar.gz", hash = "sha256:a7d018bfedb375a8d979ac758b120ba846a7fe764911a64465fd87b8729f4a6a", size = 20582187, upload-time = "2025-10-15T16:18:11.77Z" }
|
| 171 |
+
wheels = [
|
| 172 |
+
{ url = "https://files.pythonhosted.org/packages/96/7a/02420400b736f84317e759291b8edaeee9dc921f72b045475a9cbdb26b17/numpy-2.3.4-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:ef1b5a3e808bc40827b5fa2c8196151a4c5abe110e1726949d7abddfe5c7ae11", size = 20957727, upload-time = "2025-10-15T16:15:44.9Z" },
|
| 173 |
+
{ url = "https://files.pythonhosted.org/packages/18/90/a014805d627aa5750f6f0e878172afb6454552da929144b3c07fcae1bb13/numpy-2.3.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c2f91f496a87235c6aaf6d3f3d89b17dba64996abadccb289f48456cff931ca9", size = 14187262, upload-time = "2025-10-15T16:15:47.761Z" },
|
| 174 |
+
{ url = "https://files.pythonhosted.org/packages/c7/e4/0a94b09abe89e500dc748e7515f21a13e30c5c3fe3396e6d4ac108c25fca/numpy-2.3.4-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:f77e5b3d3da652b474cc80a14084927a5e86a5eccf54ca8ca5cbd697bf7f2667", size = 5115992, upload-time = "2025-10-15T16:15:50.144Z" },
|
| 175 |
+
{ url = "https://files.pythonhosted.org/packages/88/dd/db77c75b055c6157cbd4f9c92c4458daef0dd9cbe6d8d2fe7f803cb64c37/numpy-2.3.4-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:8ab1c5f5ee40d6e01cbe96de5863e39b215a4d24e7d007cad56c7184fdf4aeef", size = 6648672, upload-time = "2025-10-15T16:15:52.442Z" },
|
| 176 |
+
{ url = "https://files.pythonhosted.org/packages/e1/e6/e31b0d713719610e406c0ea3ae0d90760465b086da8783e2fd835ad59027/numpy-2.3.4-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:77b84453f3adcb994ddbd0d1c5d11db2d6bda1a2b7fd5ac5bd4649d6f5dc682e", size = 14284156, upload-time = "2025-10-15T16:15:54.351Z" },
|
| 177 |
+
{ url = "https://files.pythonhosted.org/packages/f9/58/30a85127bfee6f108282107caf8e06a1f0cc997cb6b52cdee699276fcce4/numpy-2.3.4-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4121c5beb58a7f9e6dfdee612cb24f4df5cd4db6e8261d7f4d7450a997a65d6a", size = 16641271, upload-time = "2025-10-15T16:15:56.67Z" },
|
| 178 |
+
{ url = "https://files.pythonhosted.org/packages/06/f2/2e06a0f2adf23e3ae29283ad96959267938d0efd20a2e25353b70065bfec/numpy-2.3.4-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:65611ecbb00ac9846efe04db15cbe6186f562f6bb7e5e05f077e53a599225d16", size = 16059531, upload-time = "2025-10-15T16:15:59.412Z" },
|
| 179 |
+
{ url = "https://files.pythonhosted.org/packages/b0/e7/b106253c7c0d5dc352b9c8fab91afd76a93950998167fa3e5afe4ef3a18f/numpy-2.3.4-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:dabc42f9c6577bcc13001b8810d300fe814b4cfbe8a92c873f269484594f9786", size = 18578983, upload-time = "2025-10-15T16:16:01.804Z" },
|
| 180 |
+
{ url = "https://files.pythonhosted.org/packages/73/e3/04ecc41e71462276ee867ccbef26a4448638eadecf1bc56772c9ed6d0255/numpy-2.3.4-cp312-cp312-win32.whl", hash = "sha256:a49d797192a8d950ca59ee2d0337a4d804f713bb5c3c50e8db26d49666e351dc", size = 6291380, upload-time = "2025-10-15T16:16:03.938Z" },
|
| 181 |
+
{ url = "https://files.pythonhosted.org/packages/3d/a8/566578b10d8d0e9955b1b6cd5db4e9d4592dd0026a941ff7994cedda030a/numpy-2.3.4-cp312-cp312-win_amd64.whl", hash = "sha256:985f1e46358f06c2a09921e8921e2c98168ed4ae12ccd6e5e87a4f1857923f32", size = 12787999, upload-time = "2025-10-15T16:16:05.801Z" },
|
| 182 |
+
{ url = "https://files.pythonhosted.org/packages/58/22/9c903a957d0a8071b607f5b1bff0761d6e608b9a965945411f867d515db1/numpy-2.3.4-cp312-cp312-win_arm64.whl", hash = "sha256:4635239814149e06e2cb9db3dd584b2fa64316c96f10656983b8026a82e6e4db", size = 10197412, upload-time = "2025-10-15T16:16:07.854Z" },
|
| 183 |
+
{ url = "https://files.pythonhosted.org/packages/57/7e/b72610cc91edf138bc588df5150957a4937221ca6058b825b4725c27be62/numpy-2.3.4-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:c090d4860032b857d94144d1a9976b8e36709e40386db289aaf6672de2a81966", size = 20950335, upload-time = "2025-10-15T16:16:10.304Z" },
|
| 184 |
+
{ url = "https://files.pythonhosted.org/packages/3e/46/bdd3370dcea2f95ef14af79dbf81e6927102ddf1cc54adc0024d61252fd9/numpy-2.3.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:a13fc473b6db0be619e45f11f9e81260f7302f8d180c49a22b6e6120022596b3", size = 14179878, upload-time = "2025-10-15T16:16:12.595Z" },
|
| 185 |
+
{ url = "https://files.pythonhosted.org/packages/ac/01/5a67cb785bda60f45415d09c2bc245433f1c68dd82eef9c9002c508b5a65/numpy-2.3.4-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:3634093d0b428e6c32c3a69b78e554f0cd20ee420dcad5a9f3b2a63762ce4197", size = 5108673, upload-time = "2025-10-15T16:16:14.877Z" },
|
| 186 |
+
{ url = "https://files.pythonhosted.org/packages/c2/cd/8428e23a9fcebd33988f4cb61208fda832800ca03781f471f3727a820704/numpy-2.3.4-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:043885b4f7e6e232d7df4f51ffdef8c36320ee9d5f227b380ea636722c7ed12e", size = 6641438, upload-time = "2025-10-15T16:16:16.805Z" },
|
| 187 |
+
{ url = "https://files.pythonhosted.org/packages/3e/d1/913fe563820f3c6b079f992458f7331278dcd7ba8427e8e745af37ddb44f/numpy-2.3.4-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4ee6a571d1e4f0ea6d5f22d6e5fbd6ed1dc2b18542848e1e7301bd190500c9d7", size = 14281290, upload-time = "2025-10-15T16:16:18.764Z" },
|
| 188 |
+
{ url = "https://files.pythonhosted.org/packages/9e/7e/7d306ff7cb143e6d975cfa7eb98a93e73495c4deabb7d1b5ecf09ea0fd69/numpy-2.3.4-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:fc8a63918b04b8571789688b2780ab2b4a33ab44bfe8ccea36d3eba51228c953", size = 16636543, upload-time = "2025-10-15T16:16:21.072Z" },
|
| 189 |
+
{ url = "https://files.pythonhosted.org/packages/47/6a/8cfc486237e56ccfb0db234945552a557ca266f022d281a2f577b98e955c/numpy-2.3.4-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:40cc556d5abbc54aabe2b1ae287042d7bdb80c08edede19f0c0afb36ae586f37", size = 16056117, upload-time = "2025-10-15T16:16:23.369Z" },
|
| 190 |
+
{ url = "https://files.pythonhosted.org/packages/b1/0e/42cb5e69ea901e06ce24bfcc4b5664a56f950a70efdcf221f30d9615f3f3/numpy-2.3.4-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ecb63014bb7f4ce653f8be7f1df8cbc6093a5a2811211770f6606cc92b5a78fd", size = 18577788, upload-time = "2025-10-15T16:16:27.496Z" },
|
| 191 |
+
{ url = "https://files.pythonhosted.org/packages/86/92/41c3d5157d3177559ef0a35da50f0cda7fa071f4ba2306dd36818591a5bc/numpy-2.3.4-cp313-cp313-win32.whl", hash = "sha256:e8370eb6925bb8c1c4264fec52b0384b44f675f191df91cbe0140ec9f0955646", size = 6282620, upload-time = "2025-10-15T16:16:29.811Z" },
|
| 192 |
+
{ url = "https://files.pythonhosted.org/packages/09/97/fd421e8bc50766665ad35536c2bb4ef916533ba1fdd053a62d96cc7c8b95/numpy-2.3.4-cp313-cp313-win_amd64.whl", hash = "sha256:56209416e81a7893036eea03abcb91c130643eb14233b2515c90dcac963fe99d", size = 12784672, upload-time = "2025-10-15T16:16:31.589Z" },
|
| 193 |
+
{ url = "https://files.pythonhosted.org/packages/ad/df/5474fb2f74970ca8eb978093969b125a84cc3d30e47f82191f981f13a8a0/numpy-2.3.4-cp313-cp313-win_arm64.whl", hash = "sha256:a700a4031bc0fd6936e78a752eefb79092cecad2599ea9c8039c548bc097f9bc", size = 10196702, upload-time = "2025-10-15T16:16:33.902Z" },
|
| 194 |
+
{ url = "https://files.pythonhosted.org/packages/11/83/66ac031464ec1767ea3ed48ce40f615eb441072945e98693bec0bcd056cc/numpy-2.3.4-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:86966db35c4040fdca64f0816a1c1dd8dbd027d90fca5a57e00e1ca4cd41b879", size = 21049003, upload-time = "2025-10-15T16:16:36.101Z" },
|
| 195 |
+
{ url = "https://files.pythonhosted.org/packages/5f/99/5b14e0e686e61371659a1d5bebd04596b1d72227ce36eed121bb0aeab798/numpy-2.3.4-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:838f045478638b26c375ee96ea89464d38428c69170360b23a1a50fa4baa3562", size = 14302980, upload-time = "2025-10-15T16:16:39.124Z" },
|
| 196 |
+
{ url = "https://files.pythonhosted.org/packages/2c/44/e9486649cd087d9fc6920e3fc3ac2aba10838d10804b1e179fb7cbc4e634/numpy-2.3.4-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:d7315ed1dab0286adca467377c8381cd748f3dc92235f22a7dfc42745644a96a", size = 5231472, upload-time = "2025-10-15T16:16:41.168Z" },
|
| 197 |
+
{ url = "https://files.pythonhosted.org/packages/3e/51/902b24fa8887e5fe2063fd61b1895a476d0bbf46811ab0c7fdf4bd127345/numpy-2.3.4-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:84f01a4d18b2cc4ade1814a08e5f3c907b079c847051d720fad15ce37aa930b6", size = 6739342, upload-time = "2025-10-15T16:16:43.777Z" },
|
| 198 |
+
{ url = "https://files.pythonhosted.org/packages/34/f1/4de9586d05b1962acdcdb1dc4af6646361a643f8c864cef7c852bf509740/numpy-2.3.4-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:817e719a868f0dacde4abdfc5c1910b301877970195db9ab6a5e2c4bd5b121f7", size = 14354338, upload-time = "2025-10-15T16:16:46.081Z" },
|
| 199 |
+
{ url = "https://files.pythonhosted.org/packages/1f/06/1c16103b425de7969d5a76bdf5ada0804b476fed05d5f9e17b777f1cbefd/numpy-2.3.4-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:85e071da78d92a214212cacea81c6da557cab307f2c34b5f85b628e94803f9c0", size = 16702392, upload-time = "2025-10-15T16:16:48.455Z" },
|
| 200 |
+
{ url = "https://files.pythonhosted.org/packages/34/b2/65f4dc1b89b5322093572b6e55161bb42e3e0487067af73627f795cc9d47/numpy-2.3.4-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:2ec646892819370cf3558f518797f16597b4e4669894a2ba712caccc9da53f1f", size = 16134998, upload-time = "2025-10-15T16:16:51.114Z" },
|
| 201 |
+
{ url = "https://files.pythonhosted.org/packages/d4/11/94ec578896cdb973aaf56425d6c7f2aff4186a5c00fac15ff2ec46998b46/numpy-2.3.4-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:035796aaaddfe2f9664b9a9372f089cfc88bd795a67bd1bfe15e6e770934cf64", size = 18651574, upload-time = "2025-10-15T16:16:53.429Z" },
|
| 202 |
+
{ url = "https://files.pythonhosted.org/packages/62/b7/7efa763ab33dbccf56dade36938a77345ce8e8192d6b39e470ca25ff3cd0/numpy-2.3.4-cp313-cp313t-win32.whl", hash = "sha256:fea80f4f4cf83b54c3a051f2f727870ee51e22f0248d3114b8e755d160b38cfb", size = 6413135, upload-time = "2025-10-15T16:16:55.992Z" },
|
| 203 |
+
{ url = "https://files.pythonhosted.org/packages/43/70/aba4c38e8400abcc2f345e13d972fb36c26409b3e644366db7649015f291/numpy-2.3.4-cp313-cp313t-win_amd64.whl", hash = "sha256:15eea9f306b98e0be91eb344a94c0e630689ef302e10c2ce5f7e11905c704f9c", size = 12928582, upload-time = "2025-10-15T16:16:57.943Z" },
|
| 204 |
+
{ url = "https://files.pythonhosted.org/packages/67/63/871fad5f0073fc00fbbdd7232962ea1ac40eeaae2bba66c76214f7954236/numpy-2.3.4-cp313-cp313t-win_arm64.whl", hash = "sha256:b6c231c9c2fadbae4011ca5e7e83e12dc4a5072f1a1d85a0a7b3ed754d145a40", size = 10266691, upload-time = "2025-10-15T16:17:00.048Z" },
|
| 205 |
+
{ url = "https://files.pythonhosted.org/packages/72/71/ae6170143c115732470ae3a2d01512870dd16e0953f8a6dc89525696069b/numpy-2.3.4-cp314-cp314-macosx_10_15_x86_64.whl", hash = "sha256:81c3e6d8c97295a7360d367f9f8553973651b76907988bb6066376bc2252f24e", size = 20955580, upload-time = "2025-10-15T16:17:02.509Z" },
|
| 206 |
+
{ url = "https://files.pythonhosted.org/packages/af/39/4be9222ffd6ca8a30eda033d5f753276a9c3426c397bb137d8e19dedd200/numpy-2.3.4-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:7c26b0b2bf58009ed1f38a641f3db4be8d960a417ca96d14e5b06df1506d41ff", size = 14188056, upload-time = "2025-10-15T16:17:04.873Z" },
|
| 207 |
+
{ url = "https://files.pythonhosted.org/packages/6c/3d/d85f6700d0a4aa4f9491030e1021c2b2b7421b2b38d01acd16734a2bfdc7/numpy-2.3.4-cp314-cp314-macosx_14_0_arm64.whl", hash = "sha256:62b2198c438058a20b6704351b35a1d7db881812d8512d67a69c9de1f18ca05f", size = 5116555, upload-time = "2025-10-15T16:17:07.499Z" },
|
| 208 |
+
{ url = "https://files.pythonhosted.org/packages/bf/04/82c1467d86f47eee8a19a464c92f90a9bb68ccf14a54c5224d7031241ffb/numpy-2.3.4-cp314-cp314-macosx_14_0_x86_64.whl", hash = "sha256:9d729d60f8d53a7361707f4b68a9663c968882dd4f09e0d58c044c8bf5faee7b", size = 6643581, upload-time = "2025-10-15T16:17:09.774Z" },
|
| 209 |
+
{ url = "https://files.pythonhosted.org/packages/0c/d3/c79841741b837e293f48bd7db89d0ac7a4f2503b382b78a790ef1dc778a5/numpy-2.3.4-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:bd0c630cf256b0a7fd9d0a11c9413b42fef5101219ce6ed5a09624f5a65392c7", size = 14299186, upload-time = "2025-10-15T16:17:11.937Z" },
|
| 210 |
+
{ url = "https://files.pythonhosted.org/packages/e8/7e/4a14a769741fbf237eec5a12a2cbc7a4c4e061852b6533bcb9e9a796c908/numpy-2.3.4-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d5e081bc082825f8b139f9e9fe42942cb4054524598aaeb177ff476cc76d09d2", size = 16638601, upload-time = "2025-10-15T16:17:14.391Z" },
|
| 211 |
+
{ url = "https://files.pythonhosted.org/packages/93/87/1c1de269f002ff0a41173fe01dcc925f4ecff59264cd8f96cf3b60d12c9b/numpy-2.3.4-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:15fb27364ed84114438fff8aaf998c9e19adbeba08c0b75409f8c452a8692c52", size = 16074219, upload-time = "2025-10-15T16:17:17.058Z" },
|
| 212 |
+
{ url = "https://files.pythonhosted.org/packages/cd/28/18f72ee77408e40a76d691001ae599e712ca2a47ddd2c4f695b16c65f077/numpy-2.3.4-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:85d9fb2d8cd998c84d13a79a09cc0c1091648e848e4e6249b0ccd7f6b487fa26", size = 18576702, upload-time = "2025-10-15T16:17:19.379Z" },
|
| 213 |
+
{ url = "https://files.pythonhosted.org/packages/c3/76/95650169b465ececa8cf4b2e8f6df255d4bf662775e797ade2025cc51ae6/numpy-2.3.4-cp314-cp314-win32.whl", hash = "sha256:e73d63fd04e3a9d6bc187f5455d81abfad05660b212c8804bf3b407e984cd2bc", size = 6337136, upload-time = "2025-10-15T16:17:22.886Z" },
|
| 214 |
+
{ url = "https://files.pythonhosted.org/packages/dc/89/a231a5c43ede5d6f77ba4a91e915a87dea4aeea76560ba4d2bf185c683f0/numpy-2.3.4-cp314-cp314-win_amd64.whl", hash = "sha256:3da3491cee49cf16157e70f607c03a217ea6647b1cea4819c4f48e53d49139b9", size = 12920542, upload-time = "2025-10-15T16:17:24.783Z" },
|
| 215 |
+
{ url = "https://files.pythonhosted.org/packages/0d/0c/ae9434a888f717c5ed2ff2393b3f344f0ff6f1c793519fa0c540461dc530/numpy-2.3.4-cp314-cp314-win_arm64.whl", hash = "sha256:6d9cd732068e8288dbe2717177320723ccec4fb064123f0caf9bbd90ab5be868", size = 10480213, upload-time = "2025-10-15T16:17:26.935Z" },
|
| 216 |
+
{ url = "https://files.pythonhosted.org/packages/83/4b/c4a5f0841f92536f6b9592694a5b5f68c9ab37b775ff342649eadf9055d3/numpy-2.3.4-cp314-cp314t-macosx_10_15_x86_64.whl", hash = "sha256:22758999b256b595cf0b1d102b133bb61866ba5ceecf15f759623b64c020c9ec", size = 21052280, upload-time = "2025-10-15T16:17:29.638Z" },
|
| 217 |
+
{ url = "https://files.pythonhosted.org/packages/3e/80/90308845fc93b984d2cc96d83e2324ce8ad1fd6efea81b324cba4b673854/numpy-2.3.4-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:9cb177bc55b010b19798dc5497d540dea67fd13a8d9e882b2dae71de0cf09eb3", size = 14302930, upload-time = "2025-10-15T16:17:32.384Z" },
|
| 218 |
+
{ url = "https://files.pythonhosted.org/packages/3d/4e/07439f22f2a3b247cec4d63a713faae55e1141a36e77fb212881f7cda3fb/numpy-2.3.4-cp314-cp314t-macosx_14_0_arm64.whl", hash = "sha256:0f2bcc76f1e05e5ab58893407c63d90b2029908fa41f9f1cc51eecce936c3365", size = 5231504, upload-time = "2025-10-15T16:17:34.515Z" },
|
| 219 |
+
{ url = "https://files.pythonhosted.org/packages/ab/de/1e11f2547e2fe3d00482b19721855348b94ada8359aef5d40dd57bfae9df/numpy-2.3.4-cp314-cp314t-macosx_14_0_x86_64.whl", hash = "sha256:8dc20bde86802df2ed8397a08d793da0ad7a5fd4ea3ac85d757bf5dd4ad7c252", size = 6739405, upload-time = "2025-10-15T16:17:36.128Z" },
|
| 220 |
+
{ url = "https://files.pythonhosted.org/packages/3b/40/8cd57393a26cebe2e923005db5134a946c62fa56a1087dc7c478f3e30837/numpy-2.3.4-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5e199c087e2aa71c8f9ce1cb7a8e10677dc12457e7cc1be4798632da37c3e86e", size = 14354866, upload-time = "2025-10-15T16:17:38.884Z" },
|
| 221 |
+
{ url = "https://files.pythonhosted.org/packages/93/39/5b3510f023f96874ee6fea2e40dfa99313a00bf3ab779f3c92978f34aace/numpy-2.3.4-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:85597b2d25ddf655495e2363fe044b0ae999b75bc4d630dc0d886484b03a5eb0", size = 16703296, upload-time = "2025-10-15T16:17:41.564Z" },
|
| 222 |
+
{ url = "https://files.pythonhosted.org/packages/41/0d/19bb163617c8045209c1996c4e427bccbc4bbff1e2c711f39203c8ddbb4a/numpy-2.3.4-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:04a69abe45b49c5955923cf2c407843d1c85013b424ae8a560bba16c92fe44a0", size = 16136046, upload-time = "2025-10-15T16:17:43.901Z" },
|
| 223 |
+
{ url = "https://files.pythonhosted.org/packages/e2/c1/6dba12fdf68b02a21ac411c9df19afa66bed2540f467150ca64d246b463d/numpy-2.3.4-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:e1708fac43ef8b419c975926ce1eaf793b0c13b7356cfab6ab0dc34c0a02ac0f", size = 18652691, upload-time = "2025-10-15T16:17:46.247Z" },
|
| 224 |
+
{ url = "https://files.pythonhosted.org/packages/f8/73/f85056701dbbbb910c51d846c58d29fd46b30eecd2b6ba760fc8b8a1641b/numpy-2.3.4-cp314-cp314t-win32.whl", hash = "sha256:863e3b5f4d9915aaf1b8ec79ae560ad21f0b8d5e3adc31e73126491bb86dee1d", size = 6485782, upload-time = "2025-10-15T16:17:48.872Z" },
|
| 225 |
+
{ url = "https://files.pythonhosted.org/packages/17/90/28fa6f9865181cb817c2471ee65678afa8a7e2a1fb16141473d5fa6bacc3/numpy-2.3.4-cp314-cp314t-win_amd64.whl", hash = "sha256:962064de37b9aef801d33bc579690f8bfe6c5e70e29b61783f60bcba838a14d6", size = 13113301, upload-time = "2025-10-15T16:17:50.938Z" },
|
| 226 |
+
{ url = "https://files.pythonhosted.org/packages/54/23/08c002201a8e7e1f9afba93b97deceb813252d9cfd0d3351caed123dcf97/numpy-2.3.4-cp314-cp314t-win_arm64.whl", hash = "sha256:8b5a9a39c45d852b62693d9b3f3e0fe052541f804296ff401a72a1b60edafb29", size = 10547532, upload-time = "2025-10-15T16:17:53.48Z" },
|
| 227 |
+
]
|
| 228 |
+
|
| 229 |
+
[[package]]
|
| 230 |
+
name = "pydantic"
|
| 231 |
+
version = "2.12.3"
|
| 232 |
+
source = { registry = "https://pypi.org/simple" }
|
| 233 |
+
dependencies = [
|
| 234 |
+
{ name = "annotated-types" },
|
| 235 |
+
{ name = "pydantic-core" },
|
| 236 |
+
{ name = "typing-extensions" },
|
| 237 |
+
{ name = "typing-inspection" },
|
| 238 |
+
]
|
| 239 |
+
sdist = { url = "https://files.pythonhosted.org/packages/f3/1e/4f0a3233767010308f2fd6bd0814597e3f63f1dc98304a9112b8759df4ff/pydantic-2.12.3.tar.gz", hash = "sha256:1da1c82b0fc140bb0103bc1441ffe062154c8d38491189751ee00fd8ca65ce74", size = 819383, upload-time = "2025-10-17T15:04:21.222Z" }
|
| 240 |
+
wheels = [
|
| 241 |
+
{ url = "https://files.pythonhosted.org/packages/a1/6b/83661fa77dcefa195ad5f8cd9af3d1a7450fd57cc883ad04d65446ac2029/pydantic-2.12.3-py3-none-any.whl", hash = "sha256:6986454a854bc3bc6e5443e1369e06a3a456af9d339eda45510f517d9ea5c6bf", size = 462431, upload-time = "2025-10-17T15:04:19.346Z" },
|
| 242 |
+
]
|
| 243 |
+
|
| 244 |
+
[[package]]
|
| 245 |
+
name = "pydantic-core"
|
| 246 |
+
version = "2.41.4"
|
| 247 |
+
source = { registry = "https://pypi.org/simple" }
|
| 248 |
+
dependencies = [
|
| 249 |
+
{ name = "typing-extensions" },
|
| 250 |
+
]
|
| 251 |
+
sdist = { url = "https://files.pythonhosted.org/packages/df/18/d0944e8eaaa3efd0a91b0f1fc537d3be55ad35091b6a87638211ba691964/pydantic_core-2.41.4.tar.gz", hash = "sha256:70e47929a9d4a1905a67e4b687d5946026390568a8e952b92824118063cee4d5", size = 457557, upload-time = "2025-10-14T10:23:47.909Z" }
|
| 252 |
+
wheels = [
|
| 253 |
+
{ url = "https://files.pythonhosted.org/packages/e9/81/d3b3e95929c4369d30b2a66a91db63c8ed0a98381ae55a45da2cd1cc1288/pydantic_core-2.41.4-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:ab06d77e053d660a6faaf04894446df7b0a7e7aba70c2797465a0a1af00fc887", size = 2099043, upload-time = "2025-10-14T10:20:28.561Z" },
|
| 254 |
+
{ url = "https://files.pythonhosted.org/packages/58/da/46fdac49e6717e3a94fc9201403e08d9d61aa7a770fab6190b8740749047/pydantic_core-2.41.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:c53ff33e603a9c1179a9364b0a24694f183717b2e0da2b5ad43c316c956901b2", size = 1910699, upload-time = "2025-10-14T10:20:30.217Z" },
|
| 255 |
+
{ url = "https://files.pythonhosted.org/packages/1e/63/4d948f1b9dd8e991a5a98b77dd66c74641f5f2e5225fee37994b2e07d391/pydantic_core-2.41.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:304c54176af2c143bd181d82e77c15c41cbacea8872a2225dd37e6544dce9999", size = 1952121, upload-time = "2025-10-14T10:20:32.246Z" },
|
| 256 |
+
{ url = "https://files.pythonhosted.org/packages/b2/a7/e5fc60a6f781fc634ecaa9ecc3c20171d238794cef69ae0af79ac11b89d7/pydantic_core-2.41.4-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:025ba34a4cf4fb32f917d5d188ab5e702223d3ba603be4d8aca2f82bede432a4", size = 2041590, upload-time = "2025-10-14T10:20:34.332Z" },
|
| 257 |
+
{ url = "https://files.pythonhosted.org/packages/70/69/dce747b1d21d59e85af433428978a1893c6f8a7068fa2bb4a927fba7a5ff/pydantic_core-2.41.4-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b9f5f30c402ed58f90c70e12eff65547d3ab74685ffe8283c719e6bead8ef53f", size = 2219869, upload-time = "2025-10-14T10:20:35.965Z" },
|
| 258 |
+
{ url = "https://files.pythonhosted.org/packages/83/6a/c070e30e295403bf29c4df1cb781317b6a9bac7cd07b8d3acc94d501a63c/pydantic_core-2.41.4-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:dd96e5d15385d301733113bcaa324c8bcf111275b7675a9c6e88bfb19fc05e3b", size = 2345169, upload-time = "2025-10-14T10:20:37.627Z" },
|
| 259 |
+
{ url = "https://files.pythonhosted.org/packages/f0/83/06d001f8043c336baea7fd202a9ac7ad71f87e1c55d8112c50b745c40324/pydantic_core-2.41.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:98f348cbb44fae6e9653c1055db7e29de67ea6a9ca03a5fa2c2e11a47cff0e47", size = 2070165, upload-time = "2025-10-14T10:20:39.246Z" },
|
| 260 |
+
{ url = "https://files.pythonhosted.org/packages/14/0a/e567c2883588dd12bcbc110232d892cf385356f7c8a9910311ac997ab715/pydantic_core-2.41.4-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:ec22626a2d14620a83ca583c6f5a4080fa3155282718b6055c2ea48d3ef35970", size = 2189067, upload-time = "2025-10-14T10:20:41.015Z" },
|
| 261 |
+
{ url = "https://files.pythonhosted.org/packages/f4/1d/3d9fca34273ba03c9b1c5289f7618bc4bd09c3ad2289b5420481aa051a99/pydantic_core-2.41.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:3a95d4590b1f1a43bf33ca6d647b990a88f4a3824a8c4572c708f0b45a5290ed", size = 2132997, upload-time = "2025-10-14T10:20:43.106Z" },
|
| 262 |
+
{ url = "https://files.pythonhosted.org/packages/52/70/d702ef7a6cd41a8afc61f3554922b3ed8d19dd54c3bd4bdbfe332e610827/pydantic_core-2.41.4-cp312-cp312-musllinux_1_1_armv7l.whl", hash = "sha256:f9672ab4d398e1b602feadcffcdd3af44d5f5e6ddc15bc7d15d376d47e8e19f8", size = 2307187, upload-time = "2025-10-14T10:20:44.849Z" },
|
| 263 |
+
{ url = "https://files.pythonhosted.org/packages/68/4c/c06be6e27545d08b802127914156f38d10ca287a9e8489342793de8aae3c/pydantic_core-2.41.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:84d8854db5f55fead3b579f04bda9a36461dab0730c5d570e1526483e7bb8431", size = 2305204, upload-time = "2025-10-14T10:20:46.781Z" },
|
| 264 |
+
{ url = "https://files.pythonhosted.org/packages/b0/e5/35ae4919bcd9f18603419e23c5eaf32750224a89d41a8df1a3704b69f77e/pydantic_core-2.41.4-cp312-cp312-win32.whl", hash = "sha256:9be1c01adb2ecc4e464392c36d17f97e9110fbbc906bcbe1c943b5b87a74aabd", size = 1972536, upload-time = "2025-10-14T10:20:48.39Z" },
|
| 265 |
+
{ url = "https://files.pythonhosted.org/packages/1e/c2/49c5bb6d2a49eb2ee3647a93e3dae7080c6409a8a7558b075027644e879c/pydantic_core-2.41.4-cp312-cp312-win_amd64.whl", hash = "sha256:d682cf1d22bab22a5be08539dca3d1593488a99998f9f412137bc323179067ff", size = 2031132, upload-time = "2025-10-14T10:20:50.421Z" },
|
| 266 |
+
{ url = "https://files.pythonhosted.org/packages/06/23/936343dbcba6eec93f73e95eb346810fc732f71ba27967b287b66f7b7097/pydantic_core-2.41.4-cp312-cp312-win_arm64.whl", hash = "sha256:833eebfd75a26d17470b58768c1834dfc90141b7afc6eb0429c21fc5a21dcfb8", size = 1969483, upload-time = "2025-10-14T10:20:52.35Z" },
|
| 267 |
+
{ url = "https://files.pythonhosted.org/packages/13/d0/c20adabd181a029a970738dfe23710b52a31f1258f591874fcdec7359845/pydantic_core-2.41.4-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:85e050ad9e5f6fe1004eec65c914332e52f429bc0ae12d6fa2092407a462c746", size = 2105688, upload-time = "2025-10-14T10:20:54.448Z" },
|
| 268 |
+
{ url = "https://files.pythonhosted.org/packages/00/b6/0ce5c03cec5ae94cca220dfecddc453c077d71363b98a4bbdb3c0b22c783/pydantic_core-2.41.4-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:e7393f1d64792763a48924ba31d1e44c2cfbc05e3b1c2c9abb4ceeadd912cced", size = 1910807, upload-time = "2025-10-14T10:20:56.115Z" },
|
| 269 |
+
{ url = "https://files.pythonhosted.org/packages/68/3e/800d3d02c8beb0b5c069c870cbb83799d085debf43499c897bb4b4aaff0d/pydantic_core-2.41.4-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:94dab0940b0d1fb28bcab847adf887c66a27a40291eedf0b473be58761c9799a", size = 1956669, upload-time = "2025-10-14T10:20:57.874Z" },
|
| 270 |
+
{ url = "https://files.pythonhosted.org/packages/60/a4/24271cc71a17f64589be49ab8bd0751f6a0a03046c690df60989f2f95c2c/pydantic_core-2.41.4-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:de7c42f897e689ee6f9e93c4bec72b99ae3b32a2ade1c7e4798e690ff5246e02", size = 2051629, upload-time = "2025-10-14T10:21:00.006Z" },
|
| 271 |
+
{ url = "https://files.pythonhosted.org/packages/68/de/45af3ca2f175d91b96bfb62e1f2d2f1f9f3b14a734afe0bfeff079f78181/pydantic_core-2.41.4-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:664b3199193262277b8b3cd1e754fb07f2c6023289c815a1e1e8fb415cb247b1", size = 2224049, upload-time = "2025-10-14T10:21:01.801Z" },
|
| 272 |
+
{ url = "https://files.pythonhosted.org/packages/af/8f/ae4e1ff84672bf869d0a77af24fd78387850e9497753c432875066b5d622/pydantic_core-2.41.4-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:d95b253b88f7d308b1c0b417c4624f44553ba4762816f94e6986819b9c273fb2", size = 2342409, upload-time = "2025-10-14T10:21:03.556Z" },
|
| 273 |
+
{ url = "https://files.pythonhosted.org/packages/18/62/273dd70b0026a085c7b74b000394e1ef95719ea579c76ea2f0cc8893736d/pydantic_core-2.41.4-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a1351f5bbdbbabc689727cb91649a00cb9ee7203e0a6e54e9f5ba9e22e384b84", size = 2069635, upload-time = "2025-10-14T10:21:05.385Z" },
|
| 274 |
+
{ url = "https://files.pythonhosted.org/packages/30/03/cf485fff699b4cdaea469bc481719d3e49f023241b4abb656f8d422189fc/pydantic_core-2.41.4-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:1affa4798520b148d7182da0615d648e752de4ab1a9566b7471bc803d88a062d", size = 2194284, upload-time = "2025-10-14T10:21:07.122Z" },
|
| 275 |
+
{ url = "https://files.pythonhosted.org/packages/f9/7e/c8e713db32405dfd97211f2fc0a15d6bf8adb7640f3d18544c1f39526619/pydantic_core-2.41.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:7b74e18052fea4aa8dea2fb7dbc23d15439695da6cbe6cfc1b694af1115df09d", size = 2137566, upload-time = "2025-10-14T10:21:08.981Z" },
|
| 276 |
+
{ url = "https://files.pythonhosted.org/packages/04/f7/db71fd4cdccc8b75990f79ccafbbd66757e19f6d5ee724a6252414483fb4/pydantic_core-2.41.4-cp313-cp313-musllinux_1_1_armv7l.whl", hash = "sha256:285b643d75c0e30abda9dc1077395624f314a37e3c09ca402d4015ef5979f1a2", size = 2316809, upload-time = "2025-10-14T10:21:10.805Z" },
|
| 277 |
+
{ url = "https://files.pythonhosted.org/packages/76/63/a54973ddb945f1bca56742b48b144d85c9fc22f819ddeb9f861c249d5464/pydantic_core-2.41.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:f52679ff4218d713b3b33f88c89ccbf3a5c2c12ba665fb80ccc4192b4608dbab", size = 2311119, upload-time = "2025-10-14T10:21:12.583Z" },
|
| 278 |
+
{ url = "https://files.pythonhosted.org/packages/f8/03/5d12891e93c19218af74843a27e32b94922195ded2386f7b55382f904d2f/pydantic_core-2.41.4-cp313-cp313-win32.whl", hash = "sha256:ecde6dedd6fff127c273c76821bb754d793be1024bc33314a120f83a3c69460c", size = 1981398, upload-time = "2025-10-14T10:21:14.584Z" },
|
| 279 |
+
{ url = "https://files.pythonhosted.org/packages/be/d8/fd0de71f39db91135b7a26996160de71c073d8635edfce8b3c3681be0d6d/pydantic_core-2.41.4-cp313-cp313-win_amd64.whl", hash = "sha256:d081a1f3800f05409ed868ebb2d74ac39dd0c1ff6c035b5162356d76030736d4", size = 2030735, upload-time = "2025-10-14T10:21:16.432Z" },
|
| 280 |
+
{ url = "https://files.pythonhosted.org/packages/72/86/c99921c1cf6650023c08bfab6fe2d7057a5142628ef7ccfa9921f2dda1d5/pydantic_core-2.41.4-cp313-cp313-win_arm64.whl", hash = "sha256:f8e49c9c364a7edcbe2a310f12733aad95b022495ef2a8d653f645e5d20c1564", size = 1973209, upload-time = "2025-10-14T10:21:18.213Z" },
|
| 281 |
+
{ url = "https://files.pythonhosted.org/packages/36/0d/b5706cacb70a8414396efdda3d72ae0542e050b591119e458e2490baf035/pydantic_core-2.41.4-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:ed97fd56a561f5eb5706cebe94f1ad7c13b84d98312a05546f2ad036bafe87f4", size = 1877324, upload-time = "2025-10-14T10:21:20.363Z" },
|
| 282 |
+
{ url = "https://files.pythonhosted.org/packages/de/2d/cba1fa02cfdea72dfb3a9babb067c83b9dff0bbcb198368e000a6b756ea7/pydantic_core-2.41.4-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a870c307bf1ee91fc58a9a61338ff780d01bfae45922624816878dce784095d2", size = 1884515, upload-time = "2025-10-14T10:21:22.339Z" },
|
| 283 |
+
{ url = "https://files.pythonhosted.org/packages/07/ea/3df927c4384ed9b503c9cc2d076cf983b4f2adb0c754578dfb1245c51e46/pydantic_core-2.41.4-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d25e97bc1f5f8f7985bdc2335ef9e73843bb561eb1fa6831fdfc295c1c2061cf", size = 2042819, upload-time = "2025-10-14T10:21:26.683Z" },
|
| 284 |
+
{ url = "https://files.pythonhosted.org/packages/6a/ee/df8e871f07074250270a3b1b82aad4cd0026b588acd5d7d3eb2fcb1471a3/pydantic_core-2.41.4-cp313-cp313t-win_amd64.whl", hash = "sha256:d405d14bea042f166512add3091c1af40437c2e7f86988f3915fabd27b1e9cd2", size = 1995866, upload-time = "2025-10-14T10:21:28.951Z" },
|
| 285 |
+
{ url = "https://files.pythonhosted.org/packages/fc/de/b20f4ab954d6d399499c33ec4fafc46d9551e11dc1858fb7f5dca0748ceb/pydantic_core-2.41.4-cp313-cp313t-win_arm64.whl", hash = "sha256:19f3684868309db5263a11bace3c45d93f6f24afa2ffe75a647583df22a2ff89", size = 1970034, upload-time = "2025-10-14T10:21:30.869Z" },
|
| 286 |
+
{ url = "https://files.pythonhosted.org/packages/54/28/d3325da57d413b9819365546eb9a6e8b7cbd9373d9380efd5f74326143e6/pydantic_core-2.41.4-cp314-cp314-macosx_10_12_x86_64.whl", hash = "sha256:e9205d97ed08a82ebb9a307e92914bb30e18cdf6f6b12ca4bedadb1588a0bfe1", size = 2102022, upload-time = "2025-10-14T10:21:32.809Z" },
|
| 287 |
+
{ url = "https://files.pythonhosted.org/packages/9e/24/b58a1bc0d834bf1acc4361e61233ee217169a42efbdc15a60296e13ce438/pydantic_core-2.41.4-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:82df1f432b37d832709fbcc0e24394bba04a01b6ecf1ee87578145c19cde12ac", size = 1905495, upload-time = "2025-10-14T10:21:34.812Z" },
|
| 288 |
+
{ url = "https://files.pythonhosted.org/packages/fb/a4/71f759cc41b7043e8ecdaab81b985a9b6cad7cec077e0b92cff8b71ecf6b/pydantic_core-2.41.4-cp314-cp314-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fc3b4cc4539e055cfa39a3763c939f9d409eb40e85813257dcd761985a108554", size = 1956131, upload-time = "2025-10-14T10:21:36.924Z" },
|
| 289 |
+
{ url = "https://files.pythonhosted.org/packages/b0/64/1e79ac7aa51f1eec7c4cda8cbe456d5d09f05fdd68b32776d72168d54275/pydantic_core-2.41.4-cp314-cp314-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:b1eb1754fce47c63d2ff57fdb88c351a6c0150995890088b33767a10218eaa4e", size = 2052236, upload-time = "2025-10-14T10:21:38.927Z" },
|
| 290 |
+
{ url = "https://files.pythonhosted.org/packages/e9/e3/a3ffc363bd4287b80f1d43dc1c28ba64831f8dfc237d6fec8f2661138d48/pydantic_core-2.41.4-cp314-cp314-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e6ab5ab30ef325b443f379ddb575a34969c333004fca5a1daa0133a6ffaad616", size = 2223573, upload-time = "2025-10-14T10:21:41.574Z" },
|
| 291 |
+
{ url = "https://files.pythonhosted.org/packages/28/27/78814089b4d2e684a9088ede3790763c64693c3d1408ddc0a248bc789126/pydantic_core-2.41.4-cp314-cp314-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:31a41030b1d9ca497634092b46481b937ff9397a86f9f51bd41c4767b6fc04af", size = 2342467, upload-time = "2025-10-14T10:21:44.018Z" },
|
| 292 |
+
{ url = "https://files.pythonhosted.org/packages/92/97/4de0e2a1159cb85ad737e03306717637842c88c7fd6d97973172fb183149/pydantic_core-2.41.4-cp314-cp314-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a44ac1738591472c3d020f61c6df1e4015180d6262ebd39bf2aeb52571b60f12", size = 2063754, upload-time = "2025-10-14T10:21:46.466Z" },
|
| 293 |
+
{ url = "https://files.pythonhosted.org/packages/0f/50/8cb90ce4b9efcf7ae78130afeb99fd1c86125ccdf9906ef64b9d42f37c25/pydantic_core-2.41.4-cp314-cp314-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:d72f2b5e6e82ab8f94ea7d0d42f83c487dc159c5240d8f83beae684472864e2d", size = 2196754, upload-time = "2025-10-14T10:21:48.486Z" },
|
| 294 |
+
{ url = "https://files.pythonhosted.org/packages/34/3b/ccdc77af9cd5082723574a1cc1bcae7a6acacc829d7c0a06201f7886a109/pydantic_core-2.41.4-cp314-cp314-musllinux_1_1_aarch64.whl", hash = "sha256:c4d1e854aaf044487d31143f541f7aafe7b482ae72a022c664b2de2e466ed0ad", size = 2137115, upload-time = "2025-10-14T10:21:50.63Z" },
|
| 295 |
+
{ url = "https://files.pythonhosted.org/packages/ca/ba/e7c7a02651a8f7c52dc2cff2b64a30c313e3b57c7d93703cecea76c09b71/pydantic_core-2.41.4-cp314-cp314-musllinux_1_1_armv7l.whl", hash = "sha256:b568af94267729d76e6ee5ececda4e283d07bbb28e8148bb17adad93d025d25a", size = 2317400, upload-time = "2025-10-14T10:21:52.959Z" },
|
| 296 |
+
{ url = "https://files.pythonhosted.org/packages/2c/ba/6c533a4ee8aec6b812c643c49bb3bd88d3f01e3cebe451bb85512d37f00f/pydantic_core-2.41.4-cp314-cp314-musllinux_1_1_x86_64.whl", hash = "sha256:6d55fb8b1e8929b341cc313a81a26e0d48aa3b519c1dbaadec3a6a2b4fcad025", size = 2312070, upload-time = "2025-10-14T10:21:55.419Z" },
|
| 297 |
+
{ url = "https://files.pythonhosted.org/packages/22/ae/f10524fcc0ab8d7f96cf9a74c880243576fd3e72bd8ce4f81e43d22bcab7/pydantic_core-2.41.4-cp314-cp314-win32.whl", hash = "sha256:5b66584e549e2e32a1398df11da2e0a7eff45d5c2d9db9d5667c5e6ac764d77e", size = 1982277, upload-time = "2025-10-14T10:21:57.474Z" },
|
| 298 |
+
{ url = "https://files.pythonhosted.org/packages/b4/dc/e5aa27aea1ad4638f0c3fb41132f7eb583bd7420ee63204e2d4333a3bbf9/pydantic_core-2.41.4-cp314-cp314-win_amd64.whl", hash = "sha256:557a0aab88664cc552285316809cab897716a372afaf8efdbef756f8b890e894", size = 2024608, upload-time = "2025-10-14T10:21:59.557Z" },
|
| 299 |
+
{ url = "https://files.pythonhosted.org/packages/3e/61/51d89cc2612bd147198e120a13f150afbf0bcb4615cddb049ab10b81b79e/pydantic_core-2.41.4-cp314-cp314-win_arm64.whl", hash = "sha256:3f1ea6f48a045745d0d9f325989d8abd3f1eaf47dd00485912d1a3a63c623a8d", size = 1967614, upload-time = "2025-10-14T10:22:01.847Z" },
|
| 300 |
+
{ url = "https://files.pythonhosted.org/packages/0d/c2/472f2e31b95eff099961fa050c376ab7156a81da194f9edb9f710f68787b/pydantic_core-2.41.4-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:6c1fe4c5404c448b13188dd8bd2ebc2bdd7e6727fa61ff481bcc2cca894018da", size = 1876904, upload-time = "2025-10-14T10:22:04.062Z" },
|
| 301 |
+
{ url = "https://files.pythonhosted.org/packages/4a/07/ea8eeb91173807ecdae4f4a5f4b150a520085b35454350fc219ba79e66a3/pydantic_core-2.41.4-cp314-cp314t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:523e7da4d43b113bf8e7b49fa4ec0c35bf4fe66b2230bfc5c13cc498f12c6c3e", size = 1882538, upload-time = "2025-10-14T10:22:06.39Z" },
|
| 302 |
+
{ url = "https://files.pythonhosted.org/packages/1e/29/b53a9ca6cd366bfc928823679c6a76c7a4c69f8201c0ba7903ad18ebae2f/pydantic_core-2.41.4-cp314-cp314t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5729225de81fb65b70fdb1907fcf08c75d498f4a6f15af005aabb1fdadc19dfa", size = 2041183, upload-time = "2025-10-14T10:22:08.812Z" },
|
| 303 |
+
{ url = "https://files.pythonhosted.org/packages/c7/3d/f8c1a371ceebcaf94d6dd2d77c6cf4b1c078e13a5837aee83f760b4f7cfd/pydantic_core-2.41.4-cp314-cp314t-win_amd64.whl", hash = "sha256:de2cfbb09e88f0f795fd90cf955858fc2c691df65b1f21f0aa00b99f3fbc661d", size = 1993542, upload-time = "2025-10-14T10:22:11.332Z" },
|
| 304 |
+
{ url = "https://files.pythonhosted.org/packages/8a/ac/9fc61b4f9d079482a290afe8d206b8f490e9fd32d4fc03ed4fc698214e01/pydantic_core-2.41.4-cp314-cp314t-win_arm64.whl", hash = "sha256:d34f950ae05a83e0ede899c595f312ca976023ea1db100cd5aa188f7005e3ab0", size = 1973897, upload-time = "2025-10-14T10:22:13.444Z" },
|
| 305 |
+
{ url = "https://files.pythonhosted.org/packages/c4/48/ae937e5a831b7c0dc646b2ef788c27cd003894882415300ed21927c21efa/pydantic_core-2.41.4-graalpy312-graalpy250_312_native-macosx_10_12_x86_64.whl", hash = "sha256:4f5d640aeebb438517150fdeec097739614421900e4a08db4a3ef38898798537", size = 2112087, upload-time = "2025-10-14T10:22:56.818Z" },
|
| 306 |
+
{ url = "https://files.pythonhosted.org/packages/5e/db/6db8073e3d32dae017da7e0d16a9ecb897d0a4d92e00634916e486097961/pydantic_core-2.41.4-graalpy312-graalpy250_312_native-macosx_11_0_arm64.whl", hash = "sha256:4a9ab037b71927babc6d9e7fc01aea9e66dc2a4a34dff06ef0724a4049629f94", size = 1920387, upload-time = "2025-10-14T10:22:59.342Z" },
|
| 307 |
+
{ url = "https://files.pythonhosted.org/packages/0d/c1/dd3542d072fcc336030d66834872f0328727e3b8de289c662faa04aa270e/pydantic_core-2.41.4-graalpy312-graalpy250_312_native-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e4dab9484ec605c3016df9ad4fd4f9a390bc5d816a3b10c6550f8424bb80b18c", size = 1951495, upload-time = "2025-10-14T10:23:02.089Z" },
|
| 308 |
+
{ url = "https://files.pythonhosted.org/packages/2b/c6/db8d13a1f8ab3f1eb08c88bd00fd62d44311e3456d1e85c0e59e0a0376e7/pydantic_core-2.41.4-graalpy312-graalpy250_312_native-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bd8a5028425820731d8c6c098ab642d7b8b999758e24acae03ed38a66eca8335", size = 2139008, upload-time = "2025-10-14T10:23:04.539Z" },
|
| 309 |
+
]
|
| 310 |
+
|
| 311 |
+
[[package]]
|
| 312 |
+
name = "requests"
|
| 313 |
+
version = "2.32.5"
|
| 314 |
+
source = { registry = "https://pypi.org/simple" }
|
| 315 |
+
dependencies = [
|
| 316 |
+
{ name = "certifi" },
|
| 317 |
+
{ name = "charset-normalizer" },
|
| 318 |
+
{ name = "idna" },
|
| 319 |
+
{ name = "urllib3" },
|
| 320 |
+
]
|
| 321 |
+
sdist = { url = "https://files.pythonhosted.org/packages/c9/74/b3ff8e6c8446842c3f5c837e9c3dfcfe2018ea6ecef224c710c85ef728f4/requests-2.32.5.tar.gz", hash = "sha256:dbba0bac56e100853db0ea71b82b4dfd5fe2bf6d3754a8893c3af500cec7d7cf", size = 134517, upload-time = "2025-08-18T20:46:02.573Z" }
|
| 322 |
+
wheels = [
|
| 323 |
+
{ url = "https://files.pythonhosted.org/packages/1e/db/4254e3eabe8020b458f1a747140d32277ec7a271daf1d235b70dc0b4e6e3/requests-2.32.5-py3-none-any.whl", hash = "sha256:2462f94637a34fd532264295e186976db0f5d453d1cdd31473c85a6a161affb6", size = 64738, upload-time = "2025-08-18T20:46:00.542Z" },
|
| 324 |
+
]
|
| 325 |
+
|
| 326 |
+
[[package]]
|
| 327 |
+
name = "scikit-learn"
|
| 328 |
+
version = "1.7.2"
|
| 329 |
+
source = { registry = "https://pypi.org/simple" }
|
| 330 |
+
dependencies = [
|
| 331 |
+
{ name = "joblib" },
|
| 332 |
+
{ name = "numpy" },
|
| 333 |
+
{ name = "scipy" },
|
| 334 |
+
{ name = "threadpoolctl" },
|
| 335 |
+
]
|
| 336 |
+
sdist = { url = "https://files.pythonhosted.org/packages/98/c2/a7855e41c9d285dfe86dc50b250978105dce513d6e459ea66a6aeb0e1e0c/scikit_learn-1.7.2.tar.gz", hash = "sha256:20e9e49ecd130598f1ca38a1d85090e1a600147b9c02fa6f15d69cb53d968fda", size = 7193136, upload-time = "2025-09-09T08:21:29.075Z" }
|
| 337 |
+
wheels = [
|
| 338 |
+
{ url = "https://files.pythonhosted.org/packages/a7/aa/3996e2196075689afb9fce0410ebdb4a09099d7964d061d7213700204409/scikit_learn-1.7.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:8d91a97fa2b706943822398ab943cde71858a50245e31bc71dba62aab1d60a96", size = 9259818, upload-time = "2025-09-09T08:20:43.19Z" },
|
| 339 |
+
{ url = "https://files.pythonhosted.org/packages/43/5d/779320063e88af9c4a7c2cf463ff11c21ac9c8bd730c4a294b0000b666c9/scikit_learn-1.7.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:acbc0f5fd2edd3432a22c69bed78e837c70cf896cd7993d71d51ba6708507476", size = 8636997, upload-time = "2025-09-09T08:20:45.468Z" },
|
| 340 |
+
{ url = "https://files.pythonhosted.org/packages/5c/d0/0c577d9325b05594fdd33aa970bf53fb673f051a45496842caee13cfd7fe/scikit_learn-1.7.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:e5bf3d930aee75a65478df91ac1225ff89cd28e9ac7bd1196853a9229b6adb0b", size = 9478381, upload-time = "2025-09-09T08:20:47.982Z" },
|
| 341 |
+
{ url = "https://files.pythonhosted.org/packages/82/70/8bf44b933837ba8494ca0fc9a9ab60f1c13b062ad0197f60a56e2fc4c43e/scikit_learn-1.7.2-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b4d6e9deed1a47aca9fe2f267ab8e8fe82ee20b4526b2c0cd9e135cea10feb44", size = 9300296, upload-time = "2025-09-09T08:20:50.366Z" },
|
| 342 |
+
{ url = "https://files.pythonhosted.org/packages/c6/99/ed35197a158f1fdc2fe7c3680e9c70d0128f662e1fee4ed495f4b5e13db0/scikit_learn-1.7.2-cp312-cp312-win_amd64.whl", hash = "sha256:6088aa475f0785e01bcf8529f55280a3d7d298679f50c0bb70a2364a82d0b290", size = 8731256, upload-time = "2025-09-09T08:20:52.627Z" },
|
| 343 |
+
{ url = "https://files.pythonhosted.org/packages/ae/93/a3038cb0293037fd335f77f31fe053b89c72f17b1c8908c576c29d953e84/scikit_learn-1.7.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:0b7dacaa05e5d76759fb071558a8b5130f4845166d88654a0f9bdf3eb57851b7", size = 9212382, upload-time = "2025-09-09T08:20:54.731Z" },
|
| 344 |
+
{ url = "https://files.pythonhosted.org/packages/40/dd/9a88879b0c1104259136146e4742026b52df8540c39fec21a6383f8292c7/scikit_learn-1.7.2-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:abebbd61ad9e1deed54cca45caea8ad5f79e1b93173dece40bb8e0c658dbe6fe", size = 8592042, upload-time = "2025-09-09T08:20:57.313Z" },
|
| 345 |
+
{ url = "https://files.pythonhosted.org/packages/46/af/c5e286471b7d10871b811b72ae794ac5fe2989c0a2df07f0ec723030f5f5/scikit_learn-1.7.2-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:502c18e39849c0ea1a5d681af1dbcf15f6cce601aebb657aabbfe84133c1907f", size = 9434180, upload-time = "2025-09-09T08:20:59.671Z" },
|
| 346 |
+
{ url = "https://files.pythonhosted.org/packages/f1/fd/df59faa53312d585023b2da27e866524ffb8faf87a68516c23896c718320/scikit_learn-1.7.2-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:7a4c328a71785382fe3fe676a9ecf2c86189249beff90bf85e22bdb7efaf9ae0", size = 9283660, upload-time = "2025-09-09T08:21:01.71Z" },
|
| 347 |
+
{ url = "https://files.pythonhosted.org/packages/a7/c7/03000262759d7b6f38c836ff9d512f438a70d8a8ddae68ee80de72dcfb63/scikit_learn-1.7.2-cp313-cp313-win_amd64.whl", hash = "sha256:63a9afd6f7b229aad94618c01c252ce9e6fa97918c5ca19c9a17a087d819440c", size = 8702057, upload-time = "2025-09-09T08:21:04.234Z" },
|
| 348 |
+
{ url = "https://files.pythonhosted.org/packages/55/87/ef5eb1f267084532c8e4aef98a28b6ffe7425acbfd64b5e2f2e066bc29b3/scikit_learn-1.7.2-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:9acb6c5e867447b4e1390930e3944a005e2cb115922e693c08a323421a6966e8", size = 9558731, upload-time = "2025-09-09T08:21:06.381Z" },
|
| 349 |
+
{ url = "https://files.pythonhosted.org/packages/93/f8/6c1e3fc14b10118068d7938878a9f3f4e6d7b74a8ddb1e5bed65159ccda8/scikit_learn-1.7.2-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:2a41e2a0ef45063e654152ec9d8bcfc39f7afce35b08902bfe290c2498a67a6a", size = 9038852, upload-time = "2025-09-09T08:21:08.628Z" },
|
| 350 |
+
{ url = "https://files.pythonhosted.org/packages/83/87/066cafc896ee540c34becf95d30375fe5cbe93c3b75a0ee9aa852cd60021/scikit_learn-1.7.2-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:98335fb98509b73385b3ab2bd0639b1f610541d3988ee675c670371d6a87aa7c", size = 9527094, upload-time = "2025-09-09T08:21:11.486Z" },
|
| 351 |
+
{ url = "https://files.pythonhosted.org/packages/9c/2b/4903e1ccafa1f6453b1ab78413938c8800633988c838aa0be386cbb33072/scikit_learn-1.7.2-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:191e5550980d45449126e23ed1d5e9e24b2c68329ee1f691a3987476e115e09c", size = 9367436, upload-time = "2025-09-09T08:21:13.602Z" },
|
| 352 |
+
{ url = "https://files.pythonhosted.org/packages/b5/aa/8444be3cfb10451617ff9d177b3c190288f4563e6c50ff02728be67ad094/scikit_learn-1.7.2-cp313-cp313t-win_amd64.whl", hash = "sha256:57dc4deb1d3762c75d685507fbd0bc17160144b2f2ba4ccea5dc285ab0d0e973", size = 9275749, upload-time = "2025-09-09T08:21:15.96Z" },
|
| 353 |
+
{ url = "https://files.pythonhosted.org/packages/d9/82/dee5acf66837852e8e68df6d8d3a6cb22d3df997b733b032f513d95205b7/scikit_learn-1.7.2-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:fa8f63940e29c82d1e67a45d5297bdebbcb585f5a5a50c4914cc2e852ab77f33", size = 9208906, upload-time = "2025-09-09T08:21:18.557Z" },
|
| 354 |
+
{ url = "https://files.pythonhosted.org/packages/3c/30/9029e54e17b87cb7d50d51a5926429c683d5b4c1732f0507a6c3bed9bf65/scikit_learn-1.7.2-cp314-cp314-macosx_12_0_arm64.whl", hash = "sha256:f95dc55b7902b91331fa4e5845dd5bde0580c9cd9612b1b2791b7e80c3d32615", size = 8627836, upload-time = "2025-09-09T08:21:20.695Z" },
|
| 355 |
+
{ url = "https://files.pythonhosted.org/packages/60/18/4a52c635c71b536879f4b971c2cedf32c35ee78f48367885ed8025d1f7ee/scikit_learn-1.7.2-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:9656e4a53e54578ad10a434dc1f993330568cfee176dff07112b8785fb413106", size = 9426236, upload-time = "2025-09-09T08:21:22.645Z" },
|
| 356 |
+
{ url = "https://files.pythonhosted.org/packages/99/7e/290362f6ab582128c53445458a5befd471ed1ea37953d5bcf80604619250/scikit_learn-1.7.2-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:96dc05a854add0e50d3f47a1ef21a10a595016da5b007c7d9cd9d0bffd1fcc61", size = 9312593, upload-time = "2025-09-09T08:21:24.65Z" },
|
| 357 |
+
{ url = "https://files.pythonhosted.org/packages/8e/87/24f541b6d62b1794939ae6422f8023703bbf6900378b2b34e0b4384dfefd/scikit_learn-1.7.2-cp314-cp314-win_amd64.whl", hash = "sha256:bb24510ed3f9f61476181e4db51ce801e2ba37541def12dc9333b946fc7a9cf8", size = 8820007, upload-time = "2025-09-09T08:21:26.713Z" },
|
| 358 |
+
]
|
| 359 |
+
|
| 360 |
+
[[package]]
|
| 361 |
+
name = "scipy"
|
| 362 |
+
version = "1.16.2"
|
| 363 |
+
source = { registry = "https://pypi.org/simple" }
|
| 364 |
+
dependencies = [
|
| 365 |
+
{ name = "numpy" },
|
| 366 |
+
]
|
| 367 |
+
sdist = { url = "https://files.pythonhosted.org/packages/4c/3b/546a6f0bfe791bbb7f8d591613454d15097e53f906308ec6f7c1ce588e8e/scipy-1.16.2.tar.gz", hash = "sha256:af029b153d243a80afb6eabe40b0a07f8e35c9adc269c019f364ad747f826a6b", size = 30580599, upload-time = "2025-09-11T17:48:08.271Z" }
|
| 368 |
+
wheels = [
|
| 369 |
+
{ url = "https://files.pythonhosted.org/packages/b7/8d/6396e00db1282279a4ddd507c5f5e11f606812b608ee58517ce8abbf883f/scipy-1.16.2-cp312-cp312-macosx_10_14_x86_64.whl", hash = "sha256:89d6c100fa5c48472047632e06f0876b3c4931aac1f4291afc81a3644316bb0d", size = 36646259, upload-time = "2025-09-11T17:40:39.329Z" },
|
| 370 |
+
{ url = "https://files.pythonhosted.org/packages/3b/93/ea9edd7e193fceb8eef149804491890bde73fb169c896b61aa3e2d1e4e77/scipy-1.16.2-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:ca748936cd579d3f01928b30a17dc474550b01272d8046e3e1ee593f23620371", size = 28888976, upload-time = "2025-09-11T17:40:46.82Z" },
|
| 371 |
+
{ url = "https://files.pythonhosted.org/packages/91/4d/281fddc3d80fd738ba86fd3aed9202331180b01e2c78eaae0642f22f7e83/scipy-1.16.2-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:fac4f8ce2ddb40e2e3d0f7ec36d2a1e7f92559a2471e59aec37bd8d9de01fec0", size = 20879905, upload-time = "2025-09-11T17:40:52.545Z" },
|
| 372 |
+
{ url = "https://files.pythonhosted.org/packages/69/40/b33b74c84606fd301b2915f0062e45733c6ff5708d121dd0deaa8871e2d0/scipy-1.16.2-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:033570f1dcefd79547a88e18bccacff025c8c647a330381064f561d43b821232", size = 23553066, upload-time = "2025-09-11T17:40:59.014Z" },
|
| 373 |
+
{ url = "https://files.pythonhosted.org/packages/55/a7/22c739e2f21a42cc8f16bc76b47cff4ed54fbe0962832c589591c2abec34/scipy-1.16.2-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ea3421209bf00c8a5ef2227de496601087d8f638a2363ee09af059bd70976dc1", size = 33336407, upload-time = "2025-09-11T17:41:06.796Z" },
|
| 374 |
+
{ url = "https://files.pythonhosted.org/packages/53/11/a0160990b82999b45874dc60c0c183d3a3a969a563fffc476d5a9995c407/scipy-1.16.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f66bd07ba6f84cd4a380b41d1bf3c59ea488b590a2ff96744845163309ee8e2f", size = 35673281, upload-time = "2025-09-11T17:41:15.055Z" },
|
| 375 |
+
{ url = "https://files.pythonhosted.org/packages/96/53/7ef48a4cfcf243c3d0f1643f5887c81f29fdf76911c4e49331828e19fc0a/scipy-1.16.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:5e9feab931bd2aea4a23388c962df6468af3d808ddf2d40f94a81c5dc38f32ef", size = 36004222, upload-time = "2025-09-11T17:41:23.868Z" },
|
| 376 |
+
{ url = "https://files.pythonhosted.org/packages/49/7f/71a69e0afd460049d41c65c630c919c537815277dfea214031005f474d78/scipy-1.16.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:03dfc75e52f72cf23ec2ced468645321407faad8f0fe7b1f5b49264adbc29cb1", size = 38664586, upload-time = "2025-09-11T17:41:31.021Z" },
|
| 377 |
+
{ url = "https://files.pythonhosted.org/packages/34/95/20e02ca66fb495a95fba0642fd48e0c390d0ece9b9b14c6e931a60a12dea/scipy-1.16.2-cp312-cp312-win_amd64.whl", hash = "sha256:0ce54e07bbb394b417457409a64fd015be623f36e330ac49306433ffe04bc97e", size = 38550641, upload-time = "2025-09-11T17:41:36.61Z" },
|
| 378 |
+
{ url = "https://files.pythonhosted.org/packages/92/ad/13646b9beb0a95528ca46d52b7babafbe115017814a611f2065ee4e61d20/scipy-1.16.2-cp312-cp312-win_arm64.whl", hash = "sha256:2a8ffaa4ac0df81a0b94577b18ee079f13fecdb924df3328fc44a7dc5ac46851", size = 25456070, upload-time = "2025-09-11T17:41:41.3Z" },
|
| 379 |
+
{ url = "https://files.pythonhosted.org/packages/c1/27/c5b52f1ee81727a9fc457f5ac1e9bf3d6eab311805ea615c83c27ba06400/scipy-1.16.2-cp313-cp313-macosx_10_14_x86_64.whl", hash = "sha256:84f7bf944b43e20b8a894f5fe593976926744f6c185bacfcbdfbb62736b5cc70", size = 36604856, upload-time = "2025-09-11T17:41:47.695Z" },
|
| 380 |
+
{ url = "https://files.pythonhosted.org/packages/32/a9/15c20d08e950b540184caa8ced675ba1128accb0e09c653780ba023a4110/scipy-1.16.2-cp313-cp313-macosx_12_0_arm64.whl", hash = "sha256:5c39026d12edc826a1ef2ad35ad1e6d7f087f934bb868fc43fa3049c8b8508f9", size = 28864626, upload-time = "2025-09-11T17:41:52.642Z" },
|
| 381 |
+
{ url = "https://files.pythonhosted.org/packages/4c/fc/ea36098df653cca26062a627c1a94b0de659e97127c8491e18713ca0e3b9/scipy-1.16.2-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:e52729ffd45b68777c5319560014d6fd251294200625d9d70fd8626516fc49f5", size = 20855689, upload-time = "2025-09-11T17:41:57.886Z" },
|
| 382 |
+
{ url = "https://files.pythonhosted.org/packages/dc/6f/d0b53be55727f3e6d7c72687ec18ea6d0047cf95f1f77488b99a2bafaee1/scipy-1.16.2-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:024dd4a118cccec09ca3209b7e8e614931a6ffb804b2a601839499cb88bdf925", size = 23512151, upload-time = "2025-09-11T17:42:02.303Z" },
|
| 383 |
+
{ url = "https://files.pythonhosted.org/packages/11/85/bf7dab56e5c4b1d3d8eef92ca8ede788418ad38a7dc3ff50262f00808760/scipy-1.16.2-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:7a5dc7ee9c33019973a470556081b0fd3c9f4c44019191039f9769183141a4d9", size = 33329824, upload-time = "2025-09-11T17:42:07.549Z" },
|
| 384 |
+
{ url = "https://files.pythonhosted.org/packages/da/6a/1a927b14ddc7714111ea51f4e568203b2bb6ed59bdd036d62127c1a360c8/scipy-1.16.2-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:c2275ff105e508942f99d4e3bc56b6ef5e4b3c0af970386ca56b777608ce95b7", size = 35681881, upload-time = "2025-09-11T17:42:13.255Z" },
|
| 385 |
+
{ url = "https://files.pythonhosted.org/packages/c1/5f/331148ea5780b4fcc7007a4a6a6ee0a0c1507a796365cc642d4d226e1c3a/scipy-1.16.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:af80196eaa84f033e48444d2e0786ec47d328ba00c71e4299b602235ffef9acb", size = 36006219, upload-time = "2025-09-11T17:42:18.765Z" },
|
| 386 |
+
{ url = "https://files.pythonhosted.org/packages/46/3a/e991aa9d2aec723b4a8dcfbfc8365edec5d5e5f9f133888067f1cbb7dfc1/scipy-1.16.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:9fb1eb735fe3d6ed1f89918224e3385fbf6f9e23757cacc35f9c78d3b712dd6e", size = 38682147, upload-time = "2025-09-11T17:42:25.177Z" },
|
| 387 |
+
{ url = "https://files.pythonhosted.org/packages/a1/57/0f38e396ad19e41b4c5db66130167eef8ee620a49bc7d0512e3bb67e0cab/scipy-1.16.2-cp313-cp313-win_amd64.whl", hash = "sha256:fda714cf45ba43c9d3bae8f2585c777f64e3f89a2e073b668b32ede412d8f52c", size = 38520766, upload-time = "2025-09-11T17:43:25.342Z" },
|
| 388 |
+
{ url = "https://files.pythonhosted.org/packages/1b/a5/85d3e867b6822d331e26c862a91375bb7746a0b458db5effa093d34cdb89/scipy-1.16.2-cp313-cp313-win_arm64.whl", hash = "sha256:2f5350da923ccfd0b00e07c3e5cfb316c1c0d6c1d864c07a72d092e9f20db104", size = 25451169, upload-time = "2025-09-11T17:43:30.198Z" },
|
| 389 |
+
{ url = "https://files.pythonhosted.org/packages/09/d9/60679189bcebda55992d1a45498de6d080dcaf21ce0c8f24f888117e0c2d/scipy-1.16.2-cp313-cp313t-macosx_10_14_x86_64.whl", hash = "sha256:53d8d2ee29b925344c13bda64ab51785f016b1b9617849dac10897f0701b20c1", size = 37012682, upload-time = "2025-09-11T17:42:30.677Z" },
|
| 390 |
+
{ url = "https://files.pythonhosted.org/packages/83/be/a99d13ee4d3b7887a96f8c71361b9659ba4ef34da0338f14891e102a127f/scipy-1.16.2-cp313-cp313t-macosx_12_0_arm64.whl", hash = "sha256:9e05e33657efb4c6a9d23bd8300101536abd99c85cca82da0bffff8d8764d08a", size = 29389926, upload-time = "2025-09-11T17:42:35.845Z" },
|
| 391 |
+
{ url = "https://files.pythonhosted.org/packages/bf/0a/130164a4881cec6ca8c00faf3b57926f28ed429cd6001a673f83c7c2a579/scipy-1.16.2-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:7fe65b36036357003b3ef9d37547abeefaa353b237e989c21027b8ed62b12d4f", size = 21381152, upload-time = "2025-09-11T17:42:40.07Z" },
|
| 392 |
+
{ url = "https://files.pythonhosted.org/packages/47/a6/503ffb0310ae77fba874e10cddfc4a1280bdcca1d13c3751b8c3c2996cf8/scipy-1.16.2-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:6406d2ac6d40b861cccf57f49592f9779071655e9f75cd4f977fa0bdd09cb2e4", size = 23914410, upload-time = "2025-09-11T17:42:44.313Z" },
|
| 393 |
+
{ url = "https://files.pythonhosted.org/packages/fa/c7/1147774bcea50d00c02600aadaa919facbd8537997a62496270133536ed6/scipy-1.16.2-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ff4dc42bd321991fbf611c23fc35912d690f731c9914bf3af8f417e64aca0f21", size = 33481880, upload-time = "2025-09-11T17:42:49.325Z" },
|
| 394 |
+
{ url = "https://files.pythonhosted.org/packages/6a/74/99d5415e4c3e46b2586f30cdbecb95e101c7192628a484a40dd0d163811a/scipy-1.16.2-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:654324826654d4d9133e10675325708fb954bc84dae6e9ad0a52e75c6b1a01d7", size = 35791425, upload-time = "2025-09-11T17:42:54.711Z" },
|
| 395 |
+
{ url = "https://files.pythonhosted.org/packages/1b/ee/a6559de7c1cc710e938c0355d9d4fbcd732dac4d0d131959d1f3b63eb29c/scipy-1.16.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:63870a84cd15c44e65220eaed2dac0e8f8b26bbb991456a033c1d9abfe8a94f8", size = 36178622, upload-time = "2025-09-11T17:43:00.375Z" },
|
| 396 |
+
{ url = "https://files.pythonhosted.org/packages/4e/7b/f127a5795d5ba8ece4e0dce7d4a9fb7cb9e4f4757137757d7a69ab7d4f1a/scipy-1.16.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:fa01f0f6a3050fa6a9771a95d5faccc8e2f5a92b4a2e5440a0fa7264a2398472", size = 38783985, upload-time = "2025-09-11T17:43:06.661Z" },
|
| 397 |
+
{ url = "https://files.pythonhosted.org/packages/3e/9f/bc81c1d1e033951eb5912cd3750cc005943afa3e65a725d2443a3b3c4347/scipy-1.16.2-cp313-cp313t-win_amd64.whl", hash = "sha256:116296e89fba96f76353a8579820c2512f6e55835d3fad7780fece04367de351", size = 38631367, upload-time = "2025-09-11T17:43:14.44Z" },
|
| 398 |
+
{ url = "https://files.pythonhosted.org/packages/d6/5e/2cc7555fd81d01814271412a1d59a289d25f8b63208a0a16c21069d55d3e/scipy-1.16.2-cp313-cp313t-win_arm64.whl", hash = "sha256:98e22834650be81d42982360382b43b17f7ba95e0e6993e2a4f5b9ad9283a94d", size = 25787992, upload-time = "2025-09-11T17:43:19.745Z" },
|
| 399 |
+
{ url = "https://files.pythonhosted.org/packages/8b/ac/ad8951250516db71619f0bd3b2eb2448db04b720a003dd98619b78b692c0/scipy-1.16.2-cp314-cp314-macosx_10_14_x86_64.whl", hash = "sha256:567e77755019bb7461513c87f02bb73fb65b11f049aaaa8ca17cfaa5a5c45d77", size = 36595109, upload-time = "2025-09-11T17:43:35.713Z" },
|
| 400 |
+
{ url = "https://files.pythonhosted.org/packages/ff/f6/5779049ed119c5b503b0f3dc6d6f3f68eefc3a9190d4ad4c276f854f051b/scipy-1.16.2-cp314-cp314-macosx_12_0_arm64.whl", hash = "sha256:17d9bb346194e8967296621208fcdfd39b55498ef7d2f376884d5ac47cec1a70", size = 28859110, upload-time = "2025-09-11T17:43:40.814Z" },
|
| 401 |
+
{ url = "https://files.pythonhosted.org/packages/82/09/9986e410ae38bf0a0c737ff8189ac81a93b8e42349aac009891c054403d7/scipy-1.16.2-cp314-cp314-macosx_14_0_arm64.whl", hash = "sha256:0a17541827a9b78b777d33b623a6dcfe2ef4a25806204d08ead0768f4e529a88", size = 20850110, upload-time = "2025-09-11T17:43:44.981Z" },
|
| 402 |
+
{ url = "https://files.pythonhosted.org/packages/0d/ad/485cdef2d9215e2a7df6d61b81d2ac073dfacf6ae24b9ae87274c4e936ae/scipy-1.16.2-cp314-cp314-macosx_14_0_x86_64.whl", hash = "sha256:d7d4c6ba016ffc0f9568d012f5f1eb77ddd99412aea121e6fa8b4c3b7cbad91f", size = 23497014, upload-time = "2025-09-11T17:43:49.074Z" },
|
| 403 |
+
{ url = "https://files.pythonhosted.org/packages/a7/74/f6a852e5d581122b8f0f831f1d1e32fb8987776ed3658e95c377d308ed86/scipy-1.16.2-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:9702c4c023227785c779cba2e1d6f7635dbb5b2e0936cdd3a4ecb98d78fd41eb", size = 33401155, upload-time = "2025-09-11T17:43:54.661Z" },
|
| 404 |
+
{ url = "https://files.pythonhosted.org/packages/d9/f5/61d243bbc7c6e5e4e13dde9887e84a5cbe9e0f75fd09843044af1590844e/scipy-1.16.2-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:d1cdf0ac28948d225decdefcc45ad7dd91716c29ab56ef32f8e0d50657dffcc7", size = 35691174, upload-time = "2025-09-11T17:44:00.101Z" },
|
| 405 |
+
{ url = "https://files.pythonhosted.org/packages/03/99/59933956331f8cc57e406cdb7a483906c74706b156998f322913e789c7e1/scipy-1.16.2-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:70327d6aa572a17c2941cdfb20673f82e536e91850a2e4cb0c5b858b690e1548", size = 36070752, upload-time = "2025-09-11T17:44:05.619Z" },
|
| 406 |
+
{ url = "https://files.pythonhosted.org/packages/c6/7d/00f825cfb47ee19ef74ecf01244b43e95eae74e7e0ff796026ea7cd98456/scipy-1.16.2-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:5221c0b2a4b58aa7c4ed0387d360fd90ee9086d383bb34d9f2789fafddc8a936", size = 38701010, upload-time = "2025-09-11T17:44:11.322Z" },
|
| 407 |
+
{ url = "https://files.pythonhosted.org/packages/e4/9f/b62587029980378304ba5a8563d376c96f40b1e133daacee76efdcae32de/scipy-1.16.2-cp314-cp314-win_amd64.whl", hash = "sha256:f5a85d7b2b708025af08f060a496dd261055b617d776fc05a1a1cc69e09fe9ff", size = 39360061, upload-time = "2025-09-11T17:45:09.814Z" },
|
| 408 |
+
{ url = "https://files.pythonhosted.org/packages/82/04/7a2f1609921352c7fbee0815811b5050582f67f19983096c4769867ca45f/scipy-1.16.2-cp314-cp314-win_arm64.whl", hash = "sha256:2cc73a33305b4b24556957d5857d6253ce1e2dcd67fa0ff46d87d1670b3e1e1d", size = 26126914, upload-time = "2025-09-11T17:45:14.73Z" },
|
| 409 |
+
{ url = "https://files.pythonhosted.org/packages/51/b9/60929ce350c16b221928725d2d1d7f86cf96b8bc07415547057d1196dc92/scipy-1.16.2-cp314-cp314t-macosx_10_14_x86_64.whl", hash = "sha256:9ea2a3fed83065d77367775d689401a703d0f697420719ee10c0780bcab594d8", size = 37013193, upload-time = "2025-09-11T17:44:16.757Z" },
|
| 410 |
+
{ url = "https://files.pythonhosted.org/packages/2a/41/ed80e67782d4bc5fc85a966bc356c601afddd175856ba7c7bb6d9490607e/scipy-1.16.2-cp314-cp314t-macosx_12_0_arm64.whl", hash = "sha256:7280d926f11ca945c3ef92ba960fa924e1465f8d07ce3a9923080363390624c4", size = 29390172, upload-time = "2025-09-11T17:44:21.783Z" },
|
| 411 |
+
{ url = "https://files.pythonhosted.org/packages/c4/a3/2f673ace4090452696ccded5f5f8efffb353b8f3628f823a110e0170b605/scipy-1.16.2-cp314-cp314t-macosx_14_0_arm64.whl", hash = "sha256:8afae1756f6a1fe04636407ef7dbece33d826a5d462b74f3d0eb82deabefd831", size = 21381326, upload-time = "2025-09-11T17:44:25.982Z" },
|
| 412 |
+
{ url = "https://files.pythonhosted.org/packages/42/bf/59df61c5d51395066c35836b78136accf506197617c8662e60ea209881e1/scipy-1.16.2-cp314-cp314t-macosx_14_0_x86_64.whl", hash = "sha256:5c66511f29aa8d233388e7416a3f20d5cae7a2744d5cee2ecd38c081f4e861b3", size = 23915036, upload-time = "2025-09-11T17:44:30.527Z" },
|
| 413 |
+
{ url = "https://files.pythonhosted.org/packages/91/c3/edc7b300dc16847ad3672f1a6f3f7c5d13522b21b84b81c265f4f2760d4a/scipy-1.16.2-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:efe6305aeaa0e96b0ccca5ff647a43737d9a092064a3894e46c414db84bc54ac", size = 33484341, upload-time = "2025-09-11T17:44:35.981Z" },
|
| 414 |
+
{ url = "https://files.pythonhosted.org/packages/26/c7/24d1524e72f06ff141e8d04b833c20db3021020563272ccb1b83860082a9/scipy-1.16.2-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:7f3a337d9ae06a1e8d655ee9d8ecb835ea5ddcdcbd8d23012afa055ab014f374", size = 35790840, upload-time = "2025-09-11T17:44:41.76Z" },
|
| 415 |
+
{ url = "https://files.pythonhosted.org/packages/aa/b7/5aaad984eeedd56858dc33d75efa59e8ce798d918e1033ef62d2708f2c3d/scipy-1.16.2-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:bab3605795d269067d8ce78a910220262711b753de8913d3deeaedb5dded3bb6", size = 36174716, upload-time = "2025-09-11T17:44:47.316Z" },
|
| 416 |
+
{ url = "https://files.pythonhosted.org/packages/fd/c2/e276a237acb09824822b0ada11b028ed4067fdc367a946730979feacb870/scipy-1.16.2-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:b0348d8ddb55be2a844c518cd8cc8deeeb8aeba707cf834db5758fc89b476a2c", size = 38790088, upload-time = "2025-09-11T17:44:53.011Z" },
|
| 417 |
+
{ url = "https://files.pythonhosted.org/packages/c6/b4/5c18a766e8353015439f3780f5fc473f36f9762edc1a2e45da3ff5a31b21/scipy-1.16.2-cp314-cp314t-win_amd64.whl", hash = "sha256:26284797e38b8a75e14ea6631d29bda11e76ceaa6ddb6fdebbfe4c4d90faf2f9", size = 39457455, upload-time = "2025-09-11T17:44:58.899Z" },
|
| 418 |
+
{ url = "https://files.pythonhosted.org/packages/97/30/2f9a5243008f76dfc5dee9a53dfb939d9b31e16ce4bd4f2e628bfc5d89d2/scipy-1.16.2-cp314-cp314t-win_arm64.whl", hash = "sha256:d2a4472c231328d4de38d5f1f68fdd6d28a615138f842580a8a321b5845cf779", size = 26448374, upload-time = "2025-09-11T17:45:03.45Z" },
|
| 419 |
+
]
|
| 420 |
+
|
| 421 |
+
[[package]]
|
| 422 |
+
name = "sniffio"
|
| 423 |
+
version = "1.3.1"
|
| 424 |
+
source = { registry = "https://pypi.org/simple" }
|
| 425 |
+
sdist = { url = "https://files.pythonhosted.org/packages/a2/87/a6771e1546d97e7e041b6ae58d80074f81b7d5121207425c964ddf5cfdbd/sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc", size = 20372, upload-time = "2024-02-25T23:20:04.057Z" }
|
| 426 |
+
wheels = [
|
| 427 |
+
{ url = "https://files.pythonhosted.org/packages/e9/44/75a9c9421471a6c4805dbf2356f7c181a29c1879239abab1ea2cc8f38b40/sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2", size = 10235, upload-time = "2024-02-25T23:20:01.196Z" },
|
| 428 |
+
]
|
| 429 |
+
|
| 430 |
+
[[package]]
|
| 431 |
+
name = "starlette"
|
| 432 |
+
version = "0.48.0"
|
| 433 |
+
source = { registry = "https://pypi.org/simple" }
|
| 434 |
+
dependencies = [
|
| 435 |
+
{ name = "anyio" },
|
| 436 |
+
{ name = "typing-extensions", marker = "python_full_version < '3.13'" },
|
| 437 |
+
]
|
| 438 |
+
sdist = { url = "https://files.pythonhosted.org/packages/a7/a5/d6f429d43394057b67a6b5bbe6eae2f77a6bf7459d961fdb224bf206eee6/starlette-0.48.0.tar.gz", hash = "sha256:7e8cee469a8ab2352911528110ce9088fdc6a37d9876926e73da7ce4aa4c7a46", size = 2652949, upload-time = "2025-09-13T08:41:05.699Z" }
|
| 439 |
+
wheels = [
|
| 440 |
+
{ url = "https://files.pythonhosted.org/packages/be/72/2db2f49247d0a18b4f1bb9a5a39a0162869acf235f3a96418363947b3d46/starlette-0.48.0-py3-none-any.whl", hash = "sha256:0764ca97b097582558ecb498132ed0c7d942f233f365b86ba37770e026510659", size = 73736, upload-time = "2025-09-13T08:41:03.869Z" },
|
| 441 |
+
]
|
| 442 |
+
|
| 443 |
+
[[package]]
|
| 444 |
+
name = "threadpoolctl"
|
| 445 |
+
version = "3.6.0"
|
| 446 |
+
source = { registry = "https://pypi.org/simple" }
|
| 447 |
+
sdist = { url = "https://files.pythonhosted.org/packages/b7/4d/08c89e34946fce2aec4fbb45c9016efd5f4d7f24af8e5d93296e935631d8/threadpoolctl-3.6.0.tar.gz", hash = "sha256:8ab8b4aa3491d812b623328249fab5302a68d2d71745c8a4c719a2fcaba9f44e", size = 21274, upload-time = "2025-03-13T13:49:23.031Z" }
|
| 448 |
+
wheels = [
|
| 449 |
+
{ url = "https://files.pythonhosted.org/packages/32/d5/f9a850d79b0851d1d4ef6456097579a9005b31fea68726a4ae5f2d82ddd9/threadpoolctl-3.6.0-py3-none-any.whl", hash = "sha256:43a0b8fd5a2928500110039e43a5eed8480b918967083ea48dc3ab9f13c4a7fb", size = 18638, upload-time = "2025-03-13T13:49:21.846Z" },
|
| 450 |
+
]
|
| 451 |
+
|
| 452 |
+
[[package]]
|
| 453 |
+
name = "typing-extensions"
|
| 454 |
+
version = "4.15.0"
|
| 455 |
+
source = { registry = "https://pypi.org/simple" }
|
| 456 |
+
sdist = { url = "https://files.pythonhosted.org/packages/72/94/1a15dd82efb362ac84269196e94cf00f187f7ed21c242792a923cdb1c61f/typing_extensions-4.15.0.tar.gz", hash = "sha256:0cea48d173cc12fa28ecabc3b837ea3cf6f38c6d1136f85cbaaf598984861466", size = 109391, upload-time = "2025-08-25T13:49:26.313Z" }
|
| 457 |
+
wheels = [
|
| 458 |
+
{ url = "https://files.pythonhosted.org/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl", hash = "sha256:f0fa19c6845758ab08074a0cfa8b7aecb71c999ca73d62883bc25cc018c4e548", size = 44614, upload-time = "2025-08-25T13:49:24.86Z" },
|
| 459 |
+
]
|
| 460 |
+
|
| 461 |
+
[[package]]
|
| 462 |
+
name = "typing-inspection"
|
| 463 |
+
version = "0.4.2"
|
| 464 |
+
source = { registry = "https://pypi.org/simple" }
|
| 465 |
+
dependencies = [
|
| 466 |
+
{ name = "typing-extensions" },
|
| 467 |
+
]
|
| 468 |
+
sdist = { url = "https://files.pythonhosted.org/packages/55/e3/70399cb7dd41c10ac53367ae42139cf4b1ca5f36bb3dc6c9d33acdb43655/typing_inspection-0.4.2.tar.gz", hash = "sha256:ba561c48a67c5958007083d386c3295464928b01faa735ab8547c5692e87f464", size = 75949, upload-time = "2025-10-01T02:14:41.687Z" }
|
| 469 |
+
wheels = [
|
| 470 |
+
{ url = "https://files.pythonhosted.org/packages/dc/9b/47798a6c91d8bdb567fe2698fe81e0c6b7cb7ef4d13da4114b41d239f65d/typing_inspection-0.4.2-py3-none-any.whl", hash = "sha256:4ed1cacbdc298c220f1bd249ed5287caa16f34d44ef4e9c3d0cbad5b521545e7", size = 14611, upload-time = "2025-10-01T02:14:40.154Z" },
|
| 471 |
+
]
|
| 472 |
+
|
| 473 |
+
[[package]]
|
| 474 |
+
name = "urllib3"
|
| 475 |
+
version = "2.5.0"
|
| 476 |
+
source = { registry = "https://pypi.org/simple" }
|
| 477 |
+
sdist = { url = "https://files.pythonhosted.org/packages/15/22/9ee70a2574a4f4599c47dd506532914ce044817c7752a79b6a51286319bc/urllib3-2.5.0.tar.gz", hash = "sha256:3fc47733c7e419d4bc3f6b3dc2b4f890bb743906a30d56ba4a5bfa4bbff92760", size = 393185, upload-time = "2025-06-18T14:07:41.644Z" }
|
| 478 |
+
wheels = [
|
| 479 |
+
{ url = "https://files.pythonhosted.org/packages/a7/c2/fe1e52489ae3122415c51f387e221dd0773709bad6c6cdaa599e8a2c5185/urllib3-2.5.0-py3-none-any.whl", hash = "sha256:e6b01673c0fa6a13e374b50871808eb3bf7046c4b125b216f6bf1cc604cff0dc", size = 129795, upload-time = "2025-06-18T14:07:40.39Z" },
|
| 480 |
+
]
|
| 481 |
+
|
| 482 |
+
[[package]]
|
| 483 |
+
name = "uvicorn"
|
| 484 |
+
version = "0.38.0"
|
| 485 |
+
source = { registry = "https://pypi.org/simple" }
|
| 486 |
+
dependencies = [
|
| 487 |
+
{ name = "click" },
|
| 488 |
+
{ name = "h11" },
|
| 489 |
+
]
|
| 490 |
+
sdist = { url = "https://files.pythonhosted.org/packages/cb/ce/f06b84e2697fef4688ca63bdb2fdf113ca0a3be33f94488f2cadb690b0cf/uvicorn-0.38.0.tar.gz", hash = "sha256:fd97093bdd120a2609fc0d3afe931d4d4ad688b6e75f0f929fde1bc36fe0e91d", size = 80605, upload-time = "2025-10-18T13:46:44.63Z" }
|
| 491 |
+
wheels = [
|
| 492 |
+
{ url = "https://files.pythonhosted.org/packages/ee/d9/d88e73ca598f4f6ff671fb5fde8a32925c2e08a637303a1d12883c7305fa/uvicorn-0.38.0-py3-none-any.whl", hash = "sha256:48c0afd214ceb59340075b4a052ea1ee91c16fbc2a9b1469cca0e54566977b02", size = 68109, upload-time = "2025-10-18T13:46:42.958Z" },
|
| 493 |
+
]
|
| 494 |
+
|
| 495 |
+
[[package]]
|
| 496 |
+
name = "week-5"
|
| 497 |
+
version = "0.1.0"
|
| 498 |
+
source = { virtual = "." }
|
| 499 |
+
dependencies = [
|
| 500 |
+
{ name = "fastapi" },
|
| 501 |
+
{ name = "scikit-learn" },
|
| 502 |
+
{ name = "uvicorn" },
|
| 503 |
+
]
|
| 504 |
+
|
| 505 |
+
[package.dev-dependencies]
|
| 506 |
+
dev = [
|
| 507 |
+
{ name = "requests" },
|
| 508 |
+
]
|
| 509 |
+
|
| 510 |
+
[package.metadata]
|
| 511 |
+
requires-dist = [
|
| 512 |
+
{ name = "fastapi", specifier = ">=0.120.0" },
|
| 513 |
+
{ name = "scikit-learn", specifier = ">=1.7.2" },
|
| 514 |
+
{ name = "uvicorn", specifier = ">=0.38.0" },
|
| 515 |
+
]
|
| 516 |
+
|
| 517 |
+
[package.metadata.requires-dev]
|
| 518 |
+
dev = [{ name = "requests", specifier = ">=2.32.5" }]
|
venv
ADDED
|
File without changes
|
workshop-uv-fastapi.ipynb
ADDED
|
@@ -0,0 +1,1986 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"id": "4458df13-d0f7-462e-bc80-42169bb1a62b",
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"source": [
|
| 8 |
+
"This is a starter notebook for an updated module 5 of ML Zoomcamp\n",
|
| 9 |
+
"\n",
|
| 10 |
+
"The code is based on the modules 3 and 4. We use the same dataset: [telco customer churn](https://www.kaggle.com/datasets/blastchar/telco-customer-churn)"
|
| 11 |
+
]
|
| 12 |
+
},
|
| 13 |
+
{
|
| 14 |
+
"cell_type": "code",
|
| 15 |
+
"execution_count": 1,
|
| 16 |
+
"id": "a16177e8-cbd2-4088-9bb0-07a0cfb3eee6",
|
| 17 |
+
"metadata": {},
|
| 18 |
+
"outputs": [],
|
| 19 |
+
"source": [
|
| 20 |
+
"import pandas as pd\n",
|
| 21 |
+
"import numpy as np\n",
|
| 22 |
+
"import sklearn"
|
| 23 |
+
]
|
| 24 |
+
},
|
| 25 |
+
{
|
| 26 |
+
"cell_type": "code",
|
| 27 |
+
"execution_count": 2,
|
| 28 |
+
"id": "498798c7-1848-47f0-9789-5881ae3658bd",
|
| 29 |
+
"metadata": {},
|
| 30 |
+
"outputs": [
|
| 31 |
+
{
|
| 32 |
+
"name": "stdout",
|
| 33 |
+
"output_type": "stream",
|
| 34 |
+
"text": [
|
| 35 |
+
"pandas==2.3.1\n",
|
| 36 |
+
"numpy==2.3.1\n",
|
| 37 |
+
"sklearn==1.7.0\n"
|
| 38 |
+
]
|
| 39 |
+
}
|
| 40 |
+
],
|
| 41 |
+
"source": [
|
| 42 |
+
"print(f'pandas=={pd.__version__}')\n",
|
| 43 |
+
"print(f'numpy=={np.__version__}')\n",
|
| 44 |
+
"print(f'sklearn=={sklearn.__version__}')"
|
| 45 |
+
]
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"cell_type": "code",
|
| 49 |
+
"execution_count": 4,
|
| 50 |
+
"id": "e9e9464c-d8ed-45ea-9e8c-70e6d73842f7",
|
| 51 |
+
"metadata": {},
|
| 52 |
+
"outputs": [],
|
| 53 |
+
"source": [
|
| 54 |
+
"# Import the necessary libraries\n",
|
| 55 |
+
"import numpy as np\n",
|
| 56 |
+
"import pandas as pd\n",
|
| 57 |
+
"from sklearn.linear_model import LogisticRegression\n",
|
| 58 |
+
"from sklearn.pipeline import make_pipeline\n",
|
| 59 |
+
"from sklearn.feature_extraction import DictVectorizer"
|
| 60 |
+
]
|
| 61 |
+
},
|
| 62 |
+
{
|
| 63 |
+
"cell_type": "code",
|
| 64 |
+
"execution_count": 8,
|
| 65 |
+
"id": "54ff5e16-47a9-43ab-975b-37605ee75d19",
|
| 66 |
+
"metadata": {
|
| 67 |
+
"scrolled": true
|
| 68 |
+
},
|
| 69 |
+
"outputs": [
|
| 70 |
+
{
|
| 71 |
+
"data": {
|
| 72 |
+
"text/html": [
|
| 73 |
+
"<div>\n",
|
| 74 |
+
"<style scoped>\n",
|
| 75 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
| 76 |
+
" vertical-align: middle;\n",
|
| 77 |
+
" }\n",
|
| 78 |
+
"\n",
|
| 79 |
+
" .dataframe tbody tr th {\n",
|
| 80 |
+
" vertical-align: top;\n",
|
| 81 |
+
" }\n",
|
| 82 |
+
"\n",
|
| 83 |
+
" .dataframe thead th {\n",
|
| 84 |
+
" text-align: right;\n",
|
| 85 |
+
" }\n",
|
| 86 |
+
"</style>\n",
|
| 87 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
| 88 |
+
" <thead>\n",
|
| 89 |
+
" <tr style=\"text-align: right;\">\n",
|
| 90 |
+
" <th></th>\n",
|
| 91 |
+
" <th>lead_source</th>\n",
|
| 92 |
+
" <th>industry</th>\n",
|
| 93 |
+
" <th>number_of_courses_viewed</th>\n",
|
| 94 |
+
" <th>annual_income</th>\n",
|
| 95 |
+
" <th>employment_status</th>\n",
|
| 96 |
+
" <th>location</th>\n",
|
| 97 |
+
" <th>interaction_count</th>\n",
|
| 98 |
+
" <th>lead_score</th>\n",
|
| 99 |
+
" <th>converted</th>\n",
|
| 100 |
+
" </tr>\n",
|
| 101 |
+
" </thead>\n",
|
| 102 |
+
" <tbody>\n",
|
| 103 |
+
" <tr>\n",
|
| 104 |
+
" <th>0</th>\n",
|
| 105 |
+
" <td>paid_ads</td>\n",
|
| 106 |
+
" <td>NaN</td>\n",
|
| 107 |
+
" <td>1</td>\n",
|
| 108 |
+
" <td>79450.0</td>\n",
|
| 109 |
+
" <td>unemployed</td>\n",
|
| 110 |
+
" <td>south_america</td>\n",
|
| 111 |
+
" <td>4</td>\n",
|
| 112 |
+
" <td>0.94</td>\n",
|
| 113 |
+
" <td>1</td>\n",
|
| 114 |
+
" </tr>\n",
|
| 115 |
+
" <tr>\n",
|
| 116 |
+
" <th>1</th>\n",
|
| 117 |
+
" <td>social_media</td>\n",
|
| 118 |
+
" <td>retail</td>\n",
|
| 119 |
+
" <td>1</td>\n",
|
| 120 |
+
" <td>46992.0</td>\n",
|
| 121 |
+
" <td>employed</td>\n",
|
| 122 |
+
" <td>south_america</td>\n",
|
| 123 |
+
" <td>1</td>\n",
|
| 124 |
+
" <td>0.80</td>\n",
|
| 125 |
+
" <td>0</td>\n",
|
| 126 |
+
" </tr>\n",
|
| 127 |
+
" <tr>\n",
|
| 128 |
+
" <th>2</th>\n",
|
| 129 |
+
" <td>events</td>\n",
|
| 130 |
+
" <td>healthcare</td>\n",
|
| 131 |
+
" <td>5</td>\n",
|
| 132 |
+
" <td>78796.0</td>\n",
|
| 133 |
+
" <td>unemployed</td>\n",
|
| 134 |
+
" <td>australia</td>\n",
|
| 135 |
+
" <td>3</td>\n",
|
| 136 |
+
" <td>0.69</td>\n",
|
| 137 |
+
" <td>1</td>\n",
|
| 138 |
+
" </tr>\n",
|
| 139 |
+
" <tr>\n",
|
| 140 |
+
" <th>3</th>\n",
|
| 141 |
+
" <td>paid_ads</td>\n",
|
| 142 |
+
" <td>retail</td>\n",
|
| 143 |
+
" <td>2</td>\n",
|
| 144 |
+
" <td>83843.0</td>\n",
|
| 145 |
+
" <td>NaN</td>\n",
|
| 146 |
+
" <td>australia</td>\n",
|
| 147 |
+
" <td>1</td>\n",
|
| 148 |
+
" <td>0.87</td>\n",
|
| 149 |
+
" <td>0</td>\n",
|
| 150 |
+
" </tr>\n",
|
| 151 |
+
" <tr>\n",
|
| 152 |
+
" <th>4</th>\n",
|
| 153 |
+
" <td>referral</td>\n",
|
| 154 |
+
" <td>education</td>\n",
|
| 155 |
+
" <td>3</td>\n",
|
| 156 |
+
" <td>85012.0</td>\n",
|
| 157 |
+
" <td>self_employed</td>\n",
|
| 158 |
+
" <td>europe</td>\n",
|
| 159 |
+
" <td>3</td>\n",
|
| 160 |
+
" <td>0.62</td>\n",
|
| 161 |
+
" <td>1</td>\n",
|
| 162 |
+
" </tr>\n",
|
| 163 |
+
" </tbody>\n",
|
| 164 |
+
"</table>\n",
|
| 165 |
+
"</div>"
|
| 166 |
+
],
|
| 167 |
+
"text/plain": [
|
| 168 |
+
" lead_source industry number_of_courses_viewed annual_income \\\n",
|
| 169 |
+
"0 paid_ads NaN 1 79450.0 \n",
|
| 170 |
+
"1 social_media retail 1 46992.0 \n",
|
| 171 |
+
"2 events healthcare 5 78796.0 \n",
|
| 172 |
+
"3 paid_ads retail 2 83843.0 \n",
|
| 173 |
+
"4 referral education 3 85012.0 \n",
|
| 174 |
+
"\n",
|
| 175 |
+
" employment_status location interaction_count lead_score converted \n",
|
| 176 |
+
"0 unemployed south_america 4 0.94 1 \n",
|
| 177 |
+
"1 employed south_america 1 0.80 0 \n",
|
| 178 |
+
"2 unemployed australia 3 0.69 1 \n",
|
| 179 |
+
"3 NaN australia 1 0.87 0 \n",
|
| 180 |
+
"4 self_employed europe 3 0.62 1 "
|
| 181 |
+
]
|
| 182 |
+
},
|
| 183 |
+
"execution_count": 8,
|
| 184 |
+
"metadata": {},
|
| 185 |
+
"output_type": "execute_result"
|
| 186 |
+
}
|
| 187 |
+
],
|
| 188 |
+
"source": [
|
| 189 |
+
"# Load the data\n",
|
| 190 |
+
"data_url = \"https://raw.githubusercontent.com/alexeygrigorev/datasets/master/course_lead_scoring.csv\"\n",
|
| 191 |
+
"df = pd.read_csv(data_url)\n",
|
| 192 |
+
"df.head()"
|
| 193 |
+
]
|
| 194 |
+
},
|
| 195 |
+
{
|
| 196 |
+
"cell_type": "code",
|
| 197 |
+
"execution_count": 11,
|
| 198 |
+
"id": "963e0b2c-5d60-4d8a-a216-00cb869d516d",
|
| 199 |
+
"metadata": {},
|
| 200 |
+
"outputs": [],
|
| 201 |
+
"source": [
|
| 202 |
+
"# the target variable\n",
|
| 203 |
+
"y_train = df.converted"
|
| 204 |
+
]
|
| 205 |
+
},
|
| 206 |
+
{
|
| 207 |
+
"cell_type": "code",
|
| 208 |
+
"execution_count": 14,
|
| 209 |
+
"id": "692ae989-fb9a-4219-9a01-18424176748d",
|
| 210 |
+
"metadata": {},
|
| 211 |
+
"outputs": [
|
| 212 |
+
{
|
| 213 |
+
"data": {
|
| 214 |
+
"text/html": [
|
| 215 |
+
"<style>#sk-container-id-2 {\n",
|
| 216 |
+
" /* Definition of color scheme common for light and dark mode */\n",
|
| 217 |
+
" --sklearn-color-text: #000;\n",
|
| 218 |
+
" --sklearn-color-text-muted: #666;\n",
|
| 219 |
+
" --sklearn-color-line: gray;\n",
|
| 220 |
+
" /* Definition of color scheme for unfitted estimators */\n",
|
| 221 |
+
" --sklearn-color-unfitted-level-0: #fff5e6;\n",
|
| 222 |
+
" --sklearn-color-unfitted-level-1: #f6e4d2;\n",
|
| 223 |
+
" --sklearn-color-unfitted-level-2: #ffe0b3;\n",
|
| 224 |
+
" --sklearn-color-unfitted-level-3: chocolate;\n",
|
| 225 |
+
" /* Definition of color scheme for fitted estimators */\n",
|
| 226 |
+
" --sklearn-color-fitted-level-0: #f0f8ff;\n",
|
| 227 |
+
" --sklearn-color-fitted-level-1: #d4ebff;\n",
|
| 228 |
+
" --sklearn-color-fitted-level-2: #b3dbfd;\n",
|
| 229 |
+
" --sklearn-color-fitted-level-3: cornflowerblue;\n",
|
| 230 |
+
"\n",
|
| 231 |
+
" /* Specific color for light theme */\n",
|
| 232 |
+
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
| 233 |
+
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
|
| 234 |
+
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
| 235 |
+
" --sklearn-color-icon: #696969;\n",
|
| 236 |
+
"\n",
|
| 237 |
+
" @media (prefers-color-scheme: dark) {\n",
|
| 238 |
+
" /* Redefinition of color scheme for dark theme */\n",
|
| 239 |
+
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
| 240 |
+
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
|
| 241 |
+
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
| 242 |
+
" --sklearn-color-icon: #878787;\n",
|
| 243 |
+
" }\n",
|
| 244 |
+
"}\n",
|
| 245 |
+
"\n",
|
| 246 |
+
"#sk-container-id-2 {\n",
|
| 247 |
+
" color: var(--sklearn-color-text);\n",
|
| 248 |
+
"}\n",
|
| 249 |
+
"\n",
|
| 250 |
+
"#sk-container-id-2 pre {\n",
|
| 251 |
+
" padding: 0;\n",
|
| 252 |
+
"}\n",
|
| 253 |
+
"\n",
|
| 254 |
+
"#sk-container-id-2 input.sk-hidden--visually {\n",
|
| 255 |
+
" border: 0;\n",
|
| 256 |
+
" clip: rect(1px 1px 1px 1px);\n",
|
| 257 |
+
" clip: rect(1px, 1px, 1px, 1px);\n",
|
| 258 |
+
" height: 1px;\n",
|
| 259 |
+
" margin: -1px;\n",
|
| 260 |
+
" overflow: hidden;\n",
|
| 261 |
+
" padding: 0;\n",
|
| 262 |
+
" position: absolute;\n",
|
| 263 |
+
" width: 1px;\n",
|
| 264 |
+
"}\n",
|
| 265 |
+
"\n",
|
| 266 |
+
"#sk-container-id-2 div.sk-dashed-wrapped {\n",
|
| 267 |
+
" border: 1px dashed var(--sklearn-color-line);\n",
|
| 268 |
+
" margin: 0 0.4em 0.5em 0.4em;\n",
|
| 269 |
+
" box-sizing: border-box;\n",
|
| 270 |
+
" padding-bottom: 0.4em;\n",
|
| 271 |
+
" background-color: var(--sklearn-color-background);\n",
|
| 272 |
+
"}\n",
|
| 273 |
+
"\n",
|
| 274 |
+
"#sk-container-id-2 div.sk-container {\n",
|
| 275 |
+
" /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
|
| 276 |
+
" but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
|
| 277 |
+
" so we also need the `!important` here to be able to override the\n",
|
| 278 |
+
" default hidden behavior on the sphinx rendered scikit-learn.org.\n",
|
| 279 |
+
" See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
|
| 280 |
+
" display: inline-block !important;\n",
|
| 281 |
+
" position: relative;\n",
|
| 282 |
+
"}\n",
|
| 283 |
+
"\n",
|
| 284 |
+
"#sk-container-id-2 div.sk-text-repr-fallback {\n",
|
| 285 |
+
" display: none;\n",
|
| 286 |
+
"}\n",
|
| 287 |
+
"\n",
|
| 288 |
+
"div.sk-parallel-item,\n",
|
| 289 |
+
"div.sk-serial,\n",
|
| 290 |
+
"div.sk-item {\n",
|
| 291 |
+
" /* draw centered vertical line to link estimators */\n",
|
| 292 |
+
" background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
|
| 293 |
+
" background-size: 2px 100%;\n",
|
| 294 |
+
" background-repeat: no-repeat;\n",
|
| 295 |
+
" background-position: center center;\n",
|
| 296 |
+
"}\n",
|
| 297 |
+
"\n",
|
| 298 |
+
"/* Parallel-specific style estimator block */\n",
|
| 299 |
+
"\n",
|
| 300 |
+
"#sk-container-id-2 div.sk-parallel-item::after {\n",
|
| 301 |
+
" content: \"\";\n",
|
| 302 |
+
" width: 100%;\n",
|
| 303 |
+
" border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
|
| 304 |
+
" flex-grow: 1;\n",
|
| 305 |
+
"}\n",
|
| 306 |
+
"\n",
|
| 307 |
+
"#sk-container-id-2 div.sk-parallel {\n",
|
| 308 |
+
" display: flex;\n",
|
| 309 |
+
" align-items: stretch;\n",
|
| 310 |
+
" justify-content: center;\n",
|
| 311 |
+
" background-color: var(--sklearn-color-background);\n",
|
| 312 |
+
" position: relative;\n",
|
| 313 |
+
"}\n",
|
| 314 |
+
"\n",
|
| 315 |
+
"#sk-container-id-2 div.sk-parallel-item {\n",
|
| 316 |
+
" display: flex;\n",
|
| 317 |
+
" flex-direction: column;\n",
|
| 318 |
+
"}\n",
|
| 319 |
+
"\n",
|
| 320 |
+
"#sk-container-id-2 div.sk-parallel-item:first-child::after {\n",
|
| 321 |
+
" align-self: flex-end;\n",
|
| 322 |
+
" width: 50%;\n",
|
| 323 |
+
"}\n",
|
| 324 |
+
"\n",
|
| 325 |
+
"#sk-container-id-2 div.sk-parallel-item:last-child::after {\n",
|
| 326 |
+
" align-self: flex-start;\n",
|
| 327 |
+
" width: 50%;\n",
|
| 328 |
+
"}\n",
|
| 329 |
+
"\n",
|
| 330 |
+
"#sk-container-id-2 div.sk-parallel-item:only-child::after {\n",
|
| 331 |
+
" width: 0;\n",
|
| 332 |
+
"}\n",
|
| 333 |
+
"\n",
|
| 334 |
+
"/* Serial-specific style estimator block */\n",
|
| 335 |
+
"\n",
|
| 336 |
+
"#sk-container-id-2 div.sk-serial {\n",
|
| 337 |
+
" display: flex;\n",
|
| 338 |
+
" flex-direction: column;\n",
|
| 339 |
+
" align-items: center;\n",
|
| 340 |
+
" background-color: var(--sklearn-color-background);\n",
|
| 341 |
+
" padding-right: 1em;\n",
|
| 342 |
+
" padding-left: 1em;\n",
|
| 343 |
+
"}\n",
|
| 344 |
+
"\n",
|
| 345 |
+
"\n",
|
| 346 |
+
"/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
|
| 347 |
+
"clickable and can be expanded/collapsed.\n",
|
| 348 |
+
"- Pipeline and ColumnTransformer use this feature and define the default style\n",
|
| 349 |
+
"- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
|
| 350 |
+
"*/\n",
|
| 351 |
+
"\n",
|
| 352 |
+
"/* Pipeline and ColumnTransformer style (default) */\n",
|
| 353 |
+
"\n",
|
| 354 |
+
"#sk-container-id-2 div.sk-toggleable {\n",
|
| 355 |
+
" /* Default theme specific background. It is overwritten whether we have a\n",
|
| 356 |
+
" specific estimator or a Pipeline/ColumnTransformer */\n",
|
| 357 |
+
" background-color: var(--sklearn-color-background);\n",
|
| 358 |
+
"}\n",
|
| 359 |
+
"\n",
|
| 360 |
+
"/* Toggleable label */\n",
|
| 361 |
+
"#sk-container-id-2 label.sk-toggleable__label {\n",
|
| 362 |
+
" cursor: pointer;\n",
|
| 363 |
+
" display: flex;\n",
|
| 364 |
+
" width: 100%;\n",
|
| 365 |
+
" margin-bottom: 0;\n",
|
| 366 |
+
" padding: 0.5em;\n",
|
| 367 |
+
" box-sizing: border-box;\n",
|
| 368 |
+
" text-align: center;\n",
|
| 369 |
+
" align-items: start;\n",
|
| 370 |
+
" justify-content: space-between;\n",
|
| 371 |
+
" gap: 0.5em;\n",
|
| 372 |
+
"}\n",
|
| 373 |
+
"\n",
|
| 374 |
+
"#sk-container-id-2 label.sk-toggleable__label .caption {\n",
|
| 375 |
+
" font-size: 0.6rem;\n",
|
| 376 |
+
" font-weight: lighter;\n",
|
| 377 |
+
" color: var(--sklearn-color-text-muted);\n",
|
| 378 |
+
"}\n",
|
| 379 |
+
"\n",
|
| 380 |
+
"#sk-container-id-2 label.sk-toggleable__label-arrow:before {\n",
|
| 381 |
+
" /* Arrow on the left of the label */\n",
|
| 382 |
+
" content: \"▸\";\n",
|
| 383 |
+
" float: left;\n",
|
| 384 |
+
" margin-right: 0.25em;\n",
|
| 385 |
+
" color: var(--sklearn-color-icon);\n",
|
| 386 |
+
"}\n",
|
| 387 |
+
"\n",
|
| 388 |
+
"#sk-container-id-2 label.sk-toggleable__label-arrow:hover:before {\n",
|
| 389 |
+
" color: var(--sklearn-color-text);\n",
|
| 390 |
+
"}\n",
|
| 391 |
+
"\n",
|
| 392 |
+
"/* Toggleable content - dropdown */\n",
|
| 393 |
+
"\n",
|
| 394 |
+
"#sk-container-id-2 div.sk-toggleable__content {\n",
|
| 395 |
+
" display: none;\n",
|
| 396 |
+
" text-align: left;\n",
|
| 397 |
+
" /* unfitted */\n",
|
| 398 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
| 399 |
+
"}\n",
|
| 400 |
+
"\n",
|
| 401 |
+
"#sk-container-id-2 div.sk-toggleable__content.fitted {\n",
|
| 402 |
+
" /* fitted */\n",
|
| 403 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
| 404 |
+
"}\n",
|
| 405 |
+
"\n",
|
| 406 |
+
"#sk-container-id-2 div.sk-toggleable__content pre {\n",
|
| 407 |
+
" margin: 0.2em;\n",
|
| 408 |
+
" border-radius: 0.25em;\n",
|
| 409 |
+
" color: var(--sklearn-color-text);\n",
|
| 410 |
+
" /* unfitted */\n",
|
| 411 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
| 412 |
+
"}\n",
|
| 413 |
+
"\n",
|
| 414 |
+
"#sk-container-id-2 div.sk-toggleable__content.fitted pre {\n",
|
| 415 |
+
" /* unfitted */\n",
|
| 416 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
| 417 |
+
"}\n",
|
| 418 |
+
"\n",
|
| 419 |
+
"#sk-container-id-2 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
|
| 420 |
+
" /* Expand drop-down */\n",
|
| 421 |
+
" display: block;\n",
|
| 422 |
+
" width: 100%;\n",
|
| 423 |
+
" overflow: visible;\n",
|
| 424 |
+
"}\n",
|
| 425 |
+
"\n",
|
| 426 |
+
"#sk-container-id-2 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
|
| 427 |
+
" content: \"▾\";\n",
|
| 428 |
+
"}\n",
|
| 429 |
+
"\n",
|
| 430 |
+
"/* Pipeline/ColumnTransformer-specific style */\n",
|
| 431 |
+
"\n",
|
| 432 |
+
"#sk-container-id-2 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
| 433 |
+
" color: var(--sklearn-color-text);\n",
|
| 434 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
| 435 |
+
"}\n",
|
| 436 |
+
"\n",
|
| 437 |
+
"#sk-container-id-2 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
| 438 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
| 439 |
+
"}\n",
|
| 440 |
+
"\n",
|
| 441 |
+
"/* Estimator-specific style */\n",
|
| 442 |
+
"\n",
|
| 443 |
+
"/* Colorize estimator box */\n",
|
| 444 |
+
"#sk-container-id-2 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
| 445 |
+
" /* unfitted */\n",
|
| 446 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
| 447 |
+
"}\n",
|
| 448 |
+
"\n",
|
| 449 |
+
"#sk-container-id-2 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
| 450 |
+
" /* fitted */\n",
|
| 451 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
| 452 |
+
"}\n",
|
| 453 |
+
"\n",
|
| 454 |
+
"#sk-container-id-2 div.sk-label label.sk-toggleable__label,\n",
|
| 455 |
+
"#sk-container-id-2 div.sk-label label {\n",
|
| 456 |
+
" /* The background is the default theme color */\n",
|
| 457 |
+
" color: var(--sklearn-color-text-on-default-background);\n",
|
| 458 |
+
"}\n",
|
| 459 |
+
"\n",
|
| 460 |
+
"/* On hover, darken the color of the background */\n",
|
| 461 |
+
"#sk-container-id-2 div.sk-label:hover label.sk-toggleable__label {\n",
|
| 462 |
+
" color: var(--sklearn-color-text);\n",
|
| 463 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
| 464 |
+
"}\n",
|
| 465 |
+
"\n",
|
| 466 |
+
"/* Label box, darken color on hover, fitted */\n",
|
| 467 |
+
"#sk-container-id-2 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
|
| 468 |
+
" color: var(--sklearn-color-text);\n",
|
| 469 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
| 470 |
+
"}\n",
|
| 471 |
+
"\n",
|
| 472 |
+
"/* Estimator label */\n",
|
| 473 |
+
"\n",
|
| 474 |
+
"#sk-container-id-2 div.sk-label label {\n",
|
| 475 |
+
" font-family: monospace;\n",
|
| 476 |
+
" font-weight: bold;\n",
|
| 477 |
+
" display: inline-block;\n",
|
| 478 |
+
" line-height: 1.2em;\n",
|
| 479 |
+
"}\n",
|
| 480 |
+
"\n",
|
| 481 |
+
"#sk-container-id-2 div.sk-label-container {\n",
|
| 482 |
+
" text-align: center;\n",
|
| 483 |
+
"}\n",
|
| 484 |
+
"\n",
|
| 485 |
+
"/* Estimator-specific */\n",
|
| 486 |
+
"#sk-container-id-2 div.sk-estimator {\n",
|
| 487 |
+
" font-family: monospace;\n",
|
| 488 |
+
" border: 1px dotted var(--sklearn-color-border-box);\n",
|
| 489 |
+
" border-radius: 0.25em;\n",
|
| 490 |
+
" box-sizing: border-box;\n",
|
| 491 |
+
" margin-bottom: 0.5em;\n",
|
| 492 |
+
" /* unfitted */\n",
|
| 493 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
| 494 |
+
"}\n",
|
| 495 |
+
"\n",
|
| 496 |
+
"#sk-container-id-2 div.sk-estimator.fitted {\n",
|
| 497 |
+
" /* fitted */\n",
|
| 498 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
| 499 |
+
"}\n",
|
| 500 |
+
"\n",
|
| 501 |
+
"/* on hover */\n",
|
| 502 |
+
"#sk-container-id-2 div.sk-estimator:hover {\n",
|
| 503 |
+
" /* unfitted */\n",
|
| 504 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
| 505 |
+
"}\n",
|
| 506 |
+
"\n",
|
| 507 |
+
"#sk-container-id-2 div.sk-estimator.fitted:hover {\n",
|
| 508 |
+
" /* fitted */\n",
|
| 509 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
| 510 |
+
"}\n",
|
| 511 |
+
"\n",
|
| 512 |
+
"/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
|
| 513 |
+
"\n",
|
| 514 |
+
"/* Common style for \"i\" and \"?\" */\n",
|
| 515 |
+
"\n",
|
| 516 |
+
".sk-estimator-doc-link,\n",
|
| 517 |
+
"a:link.sk-estimator-doc-link,\n",
|
| 518 |
+
"a:visited.sk-estimator-doc-link {\n",
|
| 519 |
+
" float: right;\n",
|
| 520 |
+
" font-size: smaller;\n",
|
| 521 |
+
" line-height: 1em;\n",
|
| 522 |
+
" font-family: monospace;\n",
|
| 523 |
+
" background-color: var(--sklearn-color-background);\n",
|
| 524 |
+
" border-radius: 1em;\n",
|
| 525 |
+
" height: 1em;\n",
|
| 526 |
+
" width: 1em;\n",
|
| 527 |
+
" text-decoration: none !important;\n",
|
| 528 |
+
" margin-left: 0.5em;\n",
|
| 529 |
+
" text-align: center;\n",
|
| 530 |
+
" /* unfitted */\n",
|
| 531 |
+
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
| 532 |
+
" color: var(--sklearn-color-unfitted-level-1);\n",
|
| 533 |
+
"}\n",
|
| 534 |
+
"\n",
|
| 535 |
+
".sk-estimator-doc-link.fitted,\n",
|
| 536 |
+
"a:link.sk-estimator-doc-link.fitted,\n",
|
| 537 |
+
"a:visited.sk-estimator-doc-link.fitted {\n",
|
| 538 |
+
" /* fitted */\n",
|
| 539 |
+
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
| 540 |
+
" color: var(--sklearn-color-fitted-level-1);\n",
|
| 541 |
+
"}\n",
|
| 542 |
+
"\n",
|
| 543 |
+
"/* On hover */\n",
|
| 544 |
+
"div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
|
| 545 |
+
".sk-estimator-doc-link:hover,\n",
|
| 546 |
+
"div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
|
| 547 |
+
".sk-estimator-doc-link:hover {\n",
|
| 548 |
+
" /* unfitted */\n",
|
| 549 |
+
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
| 550 |
+
" color: var(--sklearn-color-background);\n",
|
| 551 |
+
" text-decoration: none;\n",
|
| 552 |
+
"}\n",
|
| 553 |
+
"\n",
|
| 554 |
+
"div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
|
| 555 |
+
".sk-estimator-doc-link.fitted:hover,\n",
|
| 556 |
+
"div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
|
| 557 |
+
".sk-estimator-doc-link.fitted:hover {\n",
|
| 558 |
+
" /* fitted */\n",
|
| 559 |
+
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
| 560 |
+
" color: var(--sklearn-color-background);\n",
|
| 561 |
+
" text-decoration: none;\n",
|
| 562 |
+
"}\n",
|
| 563 |
+
"\n",
|
| 564 |
+
"/* Span, style for the box shown on hovering the info icon */\n",
|
| 565 |
+
".sk-estimator-doc-link span {\n",
|
| 566 |
+
" display: none;\n",
|
| 567 |
+
" z-index: 9999;\n",
|
| 568 |
+
" position: relative;\n",
|
| 569 |
+
" font-weight: normal;\n",
|
| 570 |
+
" right: .2ex;\n",
|
| 571 |
+
" padding: .5ex;\n",
|
| 572 |
+
" margin: .5ex;\n",
|
| 573 |
+
" width: min-content;\n",
|
| 574 |
+
" min-width: 20ex;\n",
|
| 575 |
+
" max-width: 50ex;\n",
|
| 576 |
+
" color: var(--sklearn-color-text);\n",
|
| 577 |
+
" box-shadow: 2pt 2pt 4pt #999;\n",
|
| 578 |
+
" /* unfitted */\n",
|
| 579 |
+
" background: var(--sklearn-color-unfitted-level-0);\n",
|
| 580 |
+
" border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
|
| 581 |
+
"}\n",
|
| 582 |
+
"\n",
|
| 583 |
+
".sk-estimator-doc-link.fitted span {\n",
|
| 584 |
+
" /* fitted */\n",
|
| 585 |
+
" background: var(--sklearn-color-fitted-level-0);\n",
|
| 586 |
+
" border: var(--sklearn-color-fitted-level-3);\n",
|
| 587 |
+
"}\n",
|
| 588 |
+
"\n",
|
| 589 |
+
".sk-estimator-doc-link:hover span {\n",
|
| 590 |
+
" display: block;\n",
|
| 591 |
+
"}\n",
|
| 592 |
+
"\n",
|
| 593 |
+
"/* \"?\"-specific style due to the `<a>` HTML tag */\n",
|
| 594 |
+
"\n",
|
| 595 |
+
"#sk-container-id-2 a.estimator_doc_link {\n",
|
| 596 |
+
" float: right;\n",
|
| 597 |
+
" font-size: 1rem;\n",
|
| 598 |
+
" line-height: 1em;\n",
|
| 599 |
+
" font-family: monospace;\n",
|
| 600 |
+
" background-color: var(--sklearn-color-background);\n",
|
| 601 |
+
" border-radius: 1rem;\n",
|
| 602 |
+
" height: 1rem;\n",
|
| 603 |
+
" width: 1rem;\n",
|
| 604 |
+
" text-decoration: none;\n",
|
| 605 |
+
" /* unfitted */\n",
|
| 606 |
+
" color: var(--sklearn-color-unfitted-level-1);\n",
|
| 607 |
+
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
| 608 |
+
"}\n",
|
| 609 |
+
"\n",
|
| 610 |
+
"#sk-container-id-2 a.estimator_doc_link.fitted {\n",
|
| 611 |
+
" /* fitted */\n",
|
| 612 |
+
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
| 613 |
+
" color: var(--sklearn-color-fitted-level-1);\n",
|
| 614 |
+
"}\n",
|
| 615 |
+
"\n",
|
| 616 |
+
"/* On hover */\n",
|
| 617 |
+
"#sk-container-id-2 a.estimator_doc_link:hover {\n",
|
| 618 |
+
" /* unfitted */\n",
|
| 619 |
+
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
| 620 |
+
" color: var(--sklearn-color-background);\n",
|
| 621 |
+
" text-decoration: none;\n",
|
| 622 |
+
"}\n",
|
| 623 |
+
"\n",
|
| 624 |
+
"#sk-container-id-2 a.estimator_doc_link.fitted:hover {\n",
|
| 625 |
+
" /* fitted */\n",
|
| 626 |
+
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
| 627 |
+
"}\n",
|
| 628 |
+
"\n",
|
| 629 |
+
".estimator-table summary {\n",
|
| 630 |
+
" padding: .5rem;\n",
|
| 631 |
+
" font-family: monospace;\n",
|
| 632 |
+
" cursor: pointer;\n",
|
| 633 |
+
"}\n",
|
| 634 |
+
"\n",
|
| 635 |
+
".estimator-table details[open] {\n",
|
| 636 |
+
" padding-left: 0.1rem;\n",
|
| 637 |
+
" padding-right: 0.1rem;\n",
|
| 638 |
+
" padding-bottom: 0.3rem;\n",
|
| 639 |
+
"}\n",
|
| 640 |
+
"\n",
|
| 641 |
+
".estimator-table .parameters-table {\n",
|
| 642 |
+
" margin-left: auto !important;\n",
|
| 643 |
+
" margin-right: auto !important;\n",
|
| 644 |
+
"}\n",
|
| 645 |
+
"\n",
|
| 646 |
+
".estimator-table .parameters-table tr:nth-child(odd) {\n",
|
| 647 |
+
" background-color: #fff;\n",
|
| 648 |
+
"}\n",
|
| 649 |
+
"\n",
|
| 650 |
+
".estimator-table .parameters-table tr:nth-child(even) {\n",
|
| 651 |
+
" background-color: #f6f6f6;\n",
|
| 652 |
+
"}\n",
|
| 653 |
+
"\n",
|
| 654 |
+
".estimator-table .parameters-table tr:hover {\n",
|
| 655 |
+
" background-color: #e0e0e0;\n",
|
| 656 |
+
"}\n",
|
| 657 |
+
"\n",
|
| 658 |
+
".estimator-table table td {\n",
|
| 659 |
+
" border: 1px solid rgba(106, 105, 104, 0.232);\n",
|
| 660 |
+
"}\n",
|
| 661 |
+
"\n",
|
| 662 |
+
".user-set td {\n",
|
| 663 |
+
" color:rgb(255, 94, 0);\n",
|
| 664 |
+
" text-align: left;\n",
|
| 665 |
+
"}\n",
|
| 666 |
+
"\n",
|
| 667 |
+
".user-set td.value pre {\n",
|
| 668 |
+
" color:rgb(255, 94, 0) !important;\n",
|
| 669 |
+
" background-color: transparent !important;\n",
|
| 670 |
+
"}\n",
|
| 671 |
+
"\n",
|
| 672 |
+
".default td {\n",
|
| 673 |
+
" color: black;\n",
|
| 674 |
+
" text-align: left;\n",
|
| 675 |
+
"}\n",
|
| 676 |
+
"\n",
|
| 677 |
+
".user-set td i,\n",
|
| 678 |
+
".default td i {\n",
|
| 679 |
+
" color: black;\n",
|
| 680 |
+
"}\n",
|
| 681 |
+
"\n",
|
| 682 |
+
".copy-paste-icon {\n",
|
| 683 |
+
" background-image: url();\n",
|
| 684 |
+
" background-repeat: no-repeat;\n",
|
| 685 |
+
" background-size: 14px 14px;\n",
|
| 686 |
+
" background-position: 0;\n",
|
| 687 |
+
" display: inline-block;\n",
|
| 688 |
+
" width: 14px;\n",
|
| 689 |
+
" height: 14px;\n",
|
| 690 |
+
" cursor: pointer;\n",
|
| 691 |
+
"}\n",
|
| 692 |
+
"</style><body><div id=\"sk-container-id-2\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>Pipeline(steps=[('dictvectorizer', DictVectorizer()),\n",
|
| 693 |
+
" ('logisticregression', LogisticRegression(solver='liblinear'))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-4\" type=\"checkbox\" ><label for=\"sk-estimator-id-4\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow\"><div><div>Pipeline</div></div><div><a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.7/modules/generated/sklearn.pipeline.Pipeline.html\">?<span>Documentation for Pipeline</span></a><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></div></label><div class=\"sk-toggleable__content fitted\" data-param-prefix=\"\">\n",
|
| 694 |
+
" <div class=\"estimator-table\">\n",
|
| 695 |
+
" <details>\n",
|
| 696 |
+
" <summary>Parameters</summary>\n",
|
| 697 |
+
" <table class=\"parameters-table\">\n",
|
| 698 |
+
" <tbody>\n",
|
| 699 |
+
" \n",
|
| 700 |
+
" <tr class=\"user-set\">\n",
|
| 701 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 702 |
+
" onclick=\"copyToClipboard('steps',\n",
|
| 703 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 704 |
+
" ></i></td>\n",
|
| 705 |
+
" <td class=\"param\">steps </td>\n",
|
| 706 |
+
" <td class=\"value\">[('dictvectorizer', ...), ('logisticregression', ...)]</td>\n",
|
| 707 |
+
" </tr>\n",
|
| 708 |
+
" \n",
|
| 709 |
+
"\n",
|
| 710 |
+
" <tr class=\"default\">\n",
|
| 711 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 712 |
+
" onclick=\"copyToClipboard('transform_input',\n",
|
| 713 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 714 |
+
" ></i></td>\n",
|
| 715 |
+
" <td class=\"param\">transform_input </td>\n",
|
| 716 |
+
" <td class=\"value\">None</td>\n",
|
| 717 |
+
" </tr>\n",
|
| 718 |
+
" \n",
|
| 719 |
+
"\n",
|
| 720 |
+
" <tr class=\"default\">\n",
|
| 721 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 722 |
+
" onclick=\"copyToClipboard('memory',\n",
|
| 723 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 724 |
+
" ></i></td>\n",
|
| 725 |
+
" <td class=\"param\">memory </td>\n",
|
| 726 |
+
" <td class=\"value\">None</td>\n",
|
| 727 |
+
" </tr>\n",
|
| 728 |
+
" \n",
|
| 729 |
+
"\n",
|
| 730 |
+
" <tr class=\"default\">\n",
|
| 731 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 732 |
+
" onclick=\"copyToClipboard('verbose',\n",
|
| 733 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 734 |
+
" ></i></td>\n",
|
| 735 |
+
" <td class=\"param\">verbose </td>\n",
|
| 736 |
+
" <td class=\"value\">False</td>\n",
|
| 737 |
+
" </tr>\n",
|
| 738 |
+
" \n",
|
| 739 |
+
" </tbody>\n",
|
| 740 |
+
" </table>\n",
|
| 741 |
+
" </details>\n",
|
| 742 |
+
" </div>\n",
|
| 743 |
+
" </div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-5\" type=\"checkbox\" ><label for=\"sk-estimator-id-5\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow\"><div><div>DictVectorizer</div></div><div><a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.7/modules/generated/sklearn.feature_extraction.DictVectorizer.html\">?<span>Documentation for DictVectorizer</span></a></div></label><div class=\"sk-toggleable__content fitted\" data-param-prefix=\"dictvectorizer__\">\n",
|
| 744 |
+
" <div class=\"estimator-table\">\n",
|
| 745 |
+
" <details>\n",
|
| 746 |
+
" <summary>Parameters</summary>\n",
|
| 747 |
+
" <table class=\"parameters-table\">\n",
|
| 748 |
+
" <tbody>\n",
|
| 749 |
+
" \n",
|
| 750 |
+
" <tr class=\"default\">\n",
|
| 751 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 752 |
+
" onclick=\"copyToClipboard('dtype',\n",
|
| 753 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 754 |
+
" ></i></td>\n",
|
| 755 |
+
" <td class=\"param\">dtype </td>\n",
|
| 756 |
+
" <td class=\"value\"><class 'numpy.float64'></td>\n",
|
| 757 |
+
" </tr>\n",
|
| 758 |
+
" \n",
|
| 759 |
+
"\n",
|
| 760 |
+
" <tr class=\"default\">\n",
|
| 761 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 762 |
+
" onclick=\"copyToClipboard('separator',\n",
|
| 763 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 764 |
+
" ></i></td>\n",
|
| 765 |
+
" <td class=\"param\">separator </td>\n",
|
| 766 |
+
" <td class=\"value\">'='</td>\n",
|
| 767 |
+
" </tr>\n",
|
| 768 |
+
" \n",
|
| 769 |
+
"\n",
|
| 770 |
+
" <tr class=\"default\">\n",
|
| 771 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 772 |
+
" onclick=\"copyToClipboard('sparse',\n",
|
| 773 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 774 |
+
" ></i></td>\n",
|
| 775 |
+
" <td class=\"param\">sparse </td>\n",
|
| 776 |
+
" <td class=\"value\">True</td>\n",
|
| 777 |
+
" </tr>\n",
|
| 778 |
+
" \n",
|
| 779 |
+
"\n",
|
| 780 |
+
" <tr class=\"default\">\n",
|
| 781 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 782 |
+
" onclick=\"copyToClipboard('sort',\n",
|
| 783 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 784 |
+
" ></i></td>\n",
|
| 785 |
+
" <td class=\"param\">sort </td>\n",
|
| 786 |
+
" <td class=\"value\">True</td>\n",
|
| 787 |
+
" </tr>\n",
|
| 788 |
+
" \n",
|
| 789 |
+
" </tbody>\n",
|
| 790 |
+
" </table>\n",
|
| 791 |
+
" </details>\n",
|
| 792 |
+
" </div>\n",
|
| 793 |
+
" </div></div></div><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-6\" type=\"checkbox\" ><label for=\"sk-estimator-id-6\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow\"><div><div>LogisticRegression</div></div><div><a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.7/modules/generated/sklearn.linear_model.LogisticRegression.html\">?<span>Documentation for LogisticRegression</span></a></div></label><div class=\"sk-toggleable__content fitted\" data-param-prefix=\"logisticregression__\">\n",
|
| 794 |
+
" <div class=\"estimator-table\">\n",
|
| 795 |
+
" <details>\n",
|
| 796 |
+
" <summary>Parameters</summary>\n",
|
| 797 |
+
" <table class=\"parameters-table\">\n",
|
| 798 |
+
" <tbody>\n",
|
| 799 |
+
" \n",
|
| 800 |
+
" <tr class=\"default\">\n",
|
| 801 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 802 |
+
" onclick=\"copyToClipboard('penalty',\n",
|
| 803 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 804 |
+
" ></i></td>\n",
|
| 805 |
+
" <td class=\"param\">penalty </td>\n",
|
| 806 |
+
" <td class=\"value\">'l2'</td>\n",
|
| 807 |
+
" </tr>\n",
|
| 808 |
+
" \n",
|
| 809 |
+
"\n",
|
| 810 |
+
" <tr class=\"default\">\n",
|
| 811 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 812 |
+
" onclick=\"copyToClipboard('dual',\n",
|
| 813 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 814 |
+
" ></i></td>\n",
|
| 815 |
+
" <td class=\"param\">dual </td>\n",
|
| 816 |
+
" <td class=\"value\">False</td>\n",
|
| 817 |
+
" </tr>\n",
|
| 818 |
+
" \n",
|
| 819 |
+
"\n",
|
| 820 |
+
" <tr class=\"default\">\n",
|
| 821 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 822 |
+
" onclick=\"copyToClipboard('tol',\n",
|
| 823 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 824 |
+
" ></i></td>\n",
|
| 825 |
+
" <td class=\"param\">tol </td>\n",
|
| 826 |
+
" <td class=\"value\">0.0001</td>\n",
|
| 827 |
+
" </tr>\n",
|
| 828 |
+
" \n",
|
| 829 |
+
"\n",
|
| 830 |
+
" <tr class=\"default\">\n",
|
| 831 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 832 |
+
" onclick=\"copyToClipboard('C',\n",
|
| 833 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 834 |
+
" ></i></td>\n",
|
| 835 |
+
" <td class=\"param\">C </td>\n",
|
| 836 |
+
" <td class=\"value\">1.0</td>\n",
|
| 837 |
+
" </tr>\n",
|
| 838 |
+
" \n",
|
| 839 |
+
"\n",
|
| 840 |
+
" <tr class=\"default\">\n",
|
| 841 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 842 |
+
" onclick=\"copyToClipboard('fit_intercept',\n",
|
| 843 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 844 |
+
" ></i></td>\n",
|
| 845 |
+
" <td class=\"param\">fit_intercept </td>\n",
|
| 846 |
+
" <td class=\"value\">True</td>\n",
|
| 847 |
+
" </tr>\n",
|
| 848 |
+
" \n",
|
| 849 |
+
"\n",
|
| 850 |
+
" <tr class=\"default\">\n",
|
| 851 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 852 |
+
" onclick=\"copyToClipboard('intercept_scaling',\n",
|
| 853 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 854 |
+
" ></i></td>\n",
|
| 855 |
+
" <td class=\"param\">intercept_scaling </td>\n",
|
| 856 |
+
" <td class=\"value\">1</td>\n",
|
| 857 |
+
" </tr>\n",
|
| 858 |
+
" \n",
|
| 859 |
+
"\n",
|
| 860 |
+
" <tr class=\"default\">\n",
|
| 861 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 862 |
+
" onclick=\"copyToClipboard('class_weight',\n",
|
| 863 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 864 |
+
" ></i></td>\n",
|
| 865 |
+
" <td class=\"param\">class_weight </td>\n",
|
| 866 |
+
" <td class=\"value\">None</td>\n",
|
| 867 |
+
" </tr>\n",
|
| 868 |
+
" \n",
|
| 869 |
+
"\n",
|
| 870 |
+
" <tr class=\"default\">\n",
|
| 871 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 872 |
+
" onclick=\"copyToClipboard('random_state',\n",
|
| 873 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 874 |
+
" ></i></td>\n",
|
| 875 |
+
" <td class=\"param\">random_state </td>\n",
|
| 876 |
+
" <td class=\"value\">None</td>\n",
|
| 877 |
+
" </tr>\n",
|
| 878 |
+
" \n",
|
| 879 |
+
"\n",
|
| 880 |
+
" <tr class=\"user-set\">\n",
|
| 881 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 882 |
+
" onclick=\"copyToClipboard('solver',\n",
|
| 883 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 884 |
+
" ></i></td>\n",
|
| 885 |
+
" <td class=\"param\">solver </td>\n",
|
| 886 |
+
" <td class=\"value\">'liblinear'</td>\n",
|
| 887 |
+
" </tr>\n",
|
| 888 |
+
" \n",
|
| 889 |
+
"\n",
|
| 890 |
+
" <tr class=\"default\">\n",
|
| 891 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 892 |
+
" onclick=\"copyToClipboard('max_iter',\n",
|
| 893 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 894 |
+
" ></i></td>\n",
|
| 895 |
+
" <td class=\"param\">max_iter </td>\n",
|
| 896 |
+
" <td class=\"value\">100</td>\n",
|
| 897 |
+
" </tr>\n",
|
| 898 |
+
" \n",
|
| 899 |
+
"\n",
|
| 900 |
+
" <tr class=\"default\">\n",
|
| 901 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 902 |
+
" onclick=\"copyToClipboard('multi_class',\n",
|
| 903 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 904 |
+
" ></i></td>\n",
|
| 905 |
+
" <td class=\"param\">multi_class </td>\n",
|
| 906 |
+
" <td class=\"value\">'deprecated'</td>\n",
|
| 907 |
+
" </tr>\n",
|
| 908 |
+
" \n",
|
| 909 |
+
"\n",
|
| 910 |
+
" <tr class=\"default\">\n",
|
| 911 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 912 |
+
" onclick=\"copyToClipboard('verbose',\n",
|
| 913 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 914 |
+
" ></i></td>\n",
|
| 915 |
+
" <td class=\"param\">verbose </td>\n",
|
| 916 |
+
" <td class=\"value\">0</td>\n",
|
| 917 |
+
" </tr>\n",
|
| 918 |
+
" \n",
|
| 919 |
+
"\n",
|
| 920 |
+
" <tr class=\"default\">\n",
|
| 921 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 922 |
+
" onclick=\"copyToClipboard('warm_start',\n",
|
| 923 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 924 |
+
" ></i></td>\n",
|
| 925 |
+
" <td class=\"param\">warm_start </td>\n",
|
| 926 |
+
" <td class=\"value\">False</td>\n",
|
| 927 |
+
" </tr>\n",
|
| 928 |
+
" \n",
|
| 929 |
+
"\n",
|
| 930 |
+
" <tr class=\"default\">\n",
|
| 931 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 932 |
+
" onclick=\"copyToClipboard('n_jobs',\n",
|
| 933 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 934 |
+
" ></i></td>\n",
|
| 935 |
+
" <td class=\"param\">n_jobs </td>\n",
|
| 936 |
+
" <td class=\"value\">None</td>\n",
|
| 937 |
+
" </tr>\n",
|
| 938 |
+
" \n",
|
| 939 |
+
"\n",
|
| 940 |
+
" <tr class=\"default\">\n",
|
| 941 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 942 |
+
" onclick=\"copyToClipboard('l1_ratio',\n",
|
| 943 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 944 |
+
" ></i></td>\n",
|
| 945 |
+
" <td class=\"param\">l1_ratio </td>\n",
|
| 946 |
+
" <td class=\"value\">None</td>\n",
|
| 947 |
+
" </tr>\n",
|
| 948 |
+
" \n",
|
| 949 |
+
" </tbody>\n",
|
| 950 |
+
" </table>\n",
|
| 951 |
+
" </details>\n",
|
| 952 |
+
" </div>\n",
|
| 953 |
+
" </div></div></div></div></div></div></div><script>function copyToClipboard(text, element) {\n",
|
| 954 |
+
" // Get the parameter prefix from the closest toggleable content\n",
|
| 955 |
+
" const toggleableContent = element.closest('.sk-toggleable__content');\n",
|
| 956 |
+
" const paramPrefix = toggleableContent ? toggleableContent.dataset.paramPrefix : '';\n",
|
| 957 |
+
" const fullParamName = paramPrefix ? `${paramPrefix}${text}` : text;\n",
|
| 958 |
+
"\n",
|
| 959 |
+
" const originalStyle = element.style;\n",
|
| 960 |
+
" const computedStyle = window.getComputedStyle(element);\n",
|
| 961 |
+
" const originalWidth = computedStyle.width;\n",
|
| 962 |
+
" const originalHTML = element.innerHTML.replace('Copied!', '');\n",
|
| 963 |
+
"\n",
|
| 964 |
+
" navigator.clipboard.writeText(fullParamName)\n",
|
| 965 |
+
" .then(() => {\n",
|
| 966 |
+
" element.style.width = originalWidth;\n",
|
| 967 |
+
" element.style.color = 'green';\n",
|
| 968 |
+
" element.innerHTML = \"Copied!\";\n",
|
| 969 |
+
"\n",
|
| 970 |
+
" setTimeout(() => {\n",
|
| 971 |
+
" element.innerHTML = originalHTML;\n",
|
| 972 |
+
" element.style = originalStyle;\n",
|
| 973 |
+
" }, 2000);\n",
|
| 974 |
+
" })\n",
|
| 975 |
+
" .catch(err => {\n",
|
| 976 |
+
" console.error('Failed to copy:', err);\n",
|
| 977 |
+
" element.style.color = 'red';\n",
|
| 978 |
+
" element.innerHTML = \"Failed!\";\n",
|
| 979 |
+
" setTimeout(() => {\n",
|
| 980 |
+
" element.innerHTML = originalHTML;\n",
|
| 981 |
+
" element.style = originalStyle;\n",
|
| 982 |
+
" }, 2000);\n",
|
| 983 |
+
" });\n",
|
| 984 |
+
" return false;\n",
|
| 985 |
+
"}\n",
|
| 986 |
+
"\n",
|
| 987 |
+
"document.querySelectorAll('.fa-regular.fa-copy').forEach(function(element) {\n",
|
| 988 |
+
" const toggleableContent = element.closest('.sk-toggleable__content');\n",
|
| 989 |
+
" const paramPrefix = toggleableContent ? toggleableContent.dataset.paramPrefix : '';\n",
|
| 990 |
+
" const paramName = element.parentElement.nextElementSibling.textContent.trim();\n",
|
| 991 |
+
" const fullParamName = paramPrefix ? `${paramPrefix}${paramName}` : paramName;\n",
|
| 992 |
+
"\n",
|
| 993 |
+
" element.setAttribute('title', fullParamName);\n",
|
| 994 |
+
"});\n",
|
| 995 |
+
"</script></body>"
|
| 996 |
+
],
|
| 997 |
+
"text/plain": [
|
| 998 |
+
"Pipeline(steps=[('dictvectorizer', DictVectorizer()),\n",
|
| 999 |
+
" ('logisticregression', LogisticRegression(solver='liblinear'))])"
|
| 1000 |
+
]
|
| 1001 |
+
},
|
| 1002 |
+
"execution_count": 14,
|
| 1003 |
+
"metadata": {},
|
| 1004 |
+
"output_type": "execute_result"
|
| 1005 |
+
}
|
| 1006 |
+
],
|
| 1007 |
+
"source": [
|
| 1008 |
+
"# Preprocessing using DictVectorizer and Training the model \n",
|
| 1009 |
+
"categorical = ['lead_source']\n",
|
| 1010 |
+
"numeric = ['number_of_courses_viewed', 'annual_income']\n",
|
| 1011 |
+
"\n",
|
| 1012 |
+
"df[categorical] = df[categorical].fillna('NA')\n",
|
| 1013 |
+
"df[numeric] = df[numeric].fillna(0)\n",
|
| 1014 |
+
"\n",
|
| 1015 |
+
"train_dict = df[categorical + numeric].to_dict(orient='records')\n",
|
| 1016 |
+
"\n",
|
| 1017 |
+
"pipeline = make_pipeline(\n",
|
| 1018 |
+
" DictVectorizer(),\n",
|
| 1019 |
+
" LogisticRegression(solver='liblinear')\n",
|
| 1020 |
+
")\n",
|
| 1021 |
+
"\n",
|
| 1022 |
+
"pipeline.fit(train_dict, y_train)"
|
| 1023 |
+
]
|
| 1024 |
+
},
|
| 1025 |
+
{
|
| 1026 |
+
"cell_type": "code",
|
| 1027 |
+
"execution_count": 15,
|
| 1028 |
+
"id": "80f2002c-433b-4e77-9df7-965839859d4a",
|
| 1029 |
+
"metadata": {},
|
| 1030 |
+
"outputs": [
|
| 1031 |
+
{
|
| 1032 |
+
"data": {
|
| 1033 |
+
"text/plain": [
|
| 1034 |
+
"{'lead_source': 'paid_ads',\n",
|
| 1035 |
+
" 'number_of_courses_viewed': 1,\n",
|
| 1036 |
+
" 'annual_income': 79450.0}"
|
| 1037 |
+
]
|
| 1038 |
+
},
|
| 1039 |
+
"execution_count": 15,
|
| 1040 |
+
"metadata": {},
|
| 1041 |
+
"output_type": "execute_result"
|
| 1042 |
+
}
|
| 1043 |
+
],
|
| 1044 |
+
"source": [
|
| 1045 |
+
"train_dict[0]"
|
| 1046 |
+
]
|
| 1047 |
+
},
|
| 1048 |
+
{
|
| 1049 |
+
"cell_type": "code",
|
| 1050 |
+
"execution_count": 21,
|
| 1051 |
+
"id": "7bbf2adb-11c4-4853-8f1b-fd22b5cf09b2",
|
| 1052 |
+
"metadata": {},
|
| 1053 |
+
"outputs": [
|
| 1054 |
+
{
|
| 1055 |
+
"data": {
|
| 1056 |
+
"text/plain": [
|
| 1057 |
+
"number_of_courses_viewed\n",
|
| 1058 |
+
"1 417\n",
|
| 1059 |
+
"2 388\n",
|
| 1060 |
+
"3 269\n",
|
| 1061 |
+
"0 181\n",
|
| 1062 |
+
"4 109\n",
|
| 1063 |
+
"5 67\n",
|
| 1064 |
+
"6 22\n",
|
| 1065 |
+
"7 6\n",
|
| 1066 |
+
"8 2\n",
|
| 1067 |
+
"9 1\n",
|
| 1068 |
+
"Name: count, dtype: int64"
|
| 1069 |
+
]
|
| 1070 |
+
},
|
| 1071 |
+
"execution_count": 21,
|
| 1072 |
+
"metadata": {},
|
| 1073 |
+
"output_type": "execute_result"
|
| 1074 |
+
}
|
| 1075 |
+
],
|
| 1076 |
+
"source": [
|
| 1077 |
+
"df.number_of_courses_viewed.value_counts()"
|
| 1078 |
+
]
|
| 1079 |
+
},
|
| 1080 |
+
{
|
| 1081 |
+
"cell_type": "code",
|
| 1082 |
+
"execution_count": 26,
|
| 1083 |
+
"id": "5a613b8d-47bb-4e5a-8b80-117b49221d6c",
|
| 1084 |
+
"metadata": {},
|
| 1085 |
+
"outputs": [],
|
| 1086 |
+
"source": [
|
| 1087 |
+
"# sample customer data\n",
|
| 1088 |
+
"customer = {\n",
|
| 1089 |
+
" 'lead_source': 'organic_search',\n",
|
| 1090 |
+
" 'number_of_courses_viewed': 3,\n",
|
| 1091 |
+
" 'annual_income': 50450.0}"
|
| 1092 |
+
]
|
| 1093 |
+
},
|
| 1094 |
+
{
|
| 1095 |
+
"cell_type": "code",
|
| 1096 |
+
"execution_count": 28,
|
| 1097 |
+
"id": "b91d20df-46a2-4580-9de0-f17d5bdc7f65",
|
| 1098 |
+
"metadata": {},
|
| 1099 |
+
"outputs": [
|
| 1100 |
+
{
|
| 1101 |
+
"data": {
|
| 1102 |
+
"text/plain": [
|
| 1103 |
+
"np.float64(0.6644010536277872)"
|
| 1104 |
+
]
|
| 1105 |
+
},
|
| 1106 |
+
"execution_count": 28,
|
| 1107 |
+
"metadata": {},
|
| 1108 |
+
"output_type": "execute_result"
|
| 1109 |
+
}
|
| 1110 |
+
],
|
| 1111 |
+
"source": [
|
| 1112 |
+
"# probability of this customer to get converted\n",
|
| 1113 |
+
"pipeline.predict_proba(customer)[0, 1] "
|
| 1114 |
+
]
|
| 1115 |
+
},
|
| 1116 |
+
{
|
| 1117 |
+
"cell_type": "code",
|
| 1118 |
+
"execution_count": 29,
|
| 1119 |
+
"id": "96a4d3ac-d5e4-4890-a085-00298c231e28",
|
| 1120 |
+
"metadata": {},
|
| 1121 |
+
"outputs": [],
|
| 1122 |
+
"source": [
|
| 1123 |
+
"# save the model\n",
|
| 1124 |
+
"import pickle\n",
|
| 1125 |
+
"\n",
|
| 1126 |
+
"with open('model.bin', 'wb') as f:\n",
|
| 1127 |
+
" pickle.dump(pipeline, f)"
|
| 1128 |
+
]
|
| 1129 |
+
},
|
| 1130 |
+
{
|
| 1131 |
+
"cell_type": "code",
|
| 1132 |
+
"execution_count": 31,
|
| 1133 |
+
"id": "7f99bdbb-1304-49e1-9f6f-fdc1fdcdba54",
|
| 1134 |
+
"metadata": {},
|
| 1135 |
+
"outputs": [],
|
| 1136 |
+
"source": [
|
| 1137 |
+
"# load the model\n",
|
| 1138 |
+
"\n",
|
| 1139 |
+
"with open('model.bin', 'rb') as f_in:\n",
|
| 1140 |
+
" model = pickle.load(f_in)"
|
| 1141 |
+
]
|
| 1142 |
+
},
|
| 1143 |
+
{
|
| 1144 |
+
"cell_type": "code",
|
| 1145 |
+
"execution_count": 32,
|
| 1146 |
+
"id": "0ac0af36-e4e8-475f-896d-645a63877aff",
|
| 1147 |
+
"metadata": {},
|
| 1148 |
+
"outputs": [
|
| 1149 |
+
{
|
| 1150 |
+
"data": {
|
| 1151 |
+
"text/html": [
|
| 1152 |
+
"<style>#sk-container-id-3 {\n",
|
| 1153 |
+
" /* Definition of color scheme common for light and dark mode */\n",
|
| 1154 |
+
" --sklearn-color-text: #000;\n",
|
| 1155 |
+
" --sklearn-color-text-muted: #666;\n",
|
| 1156 |
+
" --sklearn-color-line: gray;\n",
|
| 1157 |
+
" /* Definition of color scheme for unfitted estimators */\n",
|
| 1158 |
+
" --sklearn-color-unfitted-level-0: #fff5e6;\n",
|
| 1159 |
+
" --sklearn-color-unfitted-level-1: #f6e4d2;\n",
|
| 1160 |
+
" --sklearn-color-unfitted-level-2: #ffe0b3;\n",
|
| 1161 |
+
" --sklearn-color-unfitted-level-3: chocolate;\n",
|
| 1162 |
+
" /* Definition of color scheme for fitted estimators */\n",
|
| 1163 |
+
" --sklearn-color-fitted-level-0: #f0f8ff;\n",
|
| 1164 |
+
" --sklearn-color-fitted-level-1: #d4ebff;\n",
|
| 1165 |
+
" --sklearn-color-fitted-level-2: #b3dbfd;\n",
|
| 1166 |
+
" --sklearn-color-fitted-level-3: cornflowerblue;\n",
|
| 1167 |
+
"\n",
|
| 1168 |
+
" /* Specific color for light theme */\n",
|
| 1169 |
+
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
| 1170 |
+
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
|
| 1171 |
+
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
|
| 1172 |
+
" --sklearn-color-icon: #696969;\n",
|
| 1173 |
+
"\n",
|
| 1174 |
+
" @media (prefers-color-scheme: dark) {\n",
|
| 1175 |
+
" /* Redefinition of color scheme for dark theme */\n",
|
| 1176 |
+
" --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
| 1177 |
+
" --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
|
| 1178 |
+
" --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
|
| 1179 |
+
" --sklearn-color-icon: #878787;\n",
|
| 1180 |
+
" }\n",
|
| 1181 |
+
"}\n",
|
| 1182 |
+
"\n",
|
| 1183 |
+
"#sk-container-id-3 {\n",
|
| 1184 |
+
" color: var(--sklearn-color-text);\n",
|
| 1185 |
+
"}\n",
|
| 1186 |
+
"\n",
|
| 1187 |
+
"#sk-container-id-3 pre {\n",
|
| 1188 |
+
" padding: 0;\n",
|
| 1189 |
+
"}\n",
|
| 1190 |
+
"\n",
|
| 1191 |
+
"#sk-container-id-3 input.sk-hidden--visually {\n",
|
| 1192 |
+
" border: 0;\n",
|
| 1193 |
+
" clip: rect(1px 1px 1px 1px);\n",
|
| 1194 |
+
" clip: rect(1px, 1px, 1px, 1px);\n",
|
| 1195 |
+
" height: 1px;\n",
|
| 1196 |
+
" margin: -1px;\n",
|
| 1197 |
+
" overflow: hidden;\n",
|
| 1198 |
+
" padding: 0;\n",
|
| 1199 |
+
" position: absolute;\n",
|
| 1200 |
+
" width: 1px;\n",
|
| 1201 |
+
"}\n",
|
| 1202 |
+
"\n",
|
| 1203 |
+
"#sk-container-id-3 div.sk-dashed-wrapped {\n",
|
| 1204 |
+
" border: 1px dashed var(--sklearn-color-line);\n",
|
| 1205 |
+
" margin: 0 0.4em 0.5em 0.4em;\n",
|
| 1206 |
+
" box-sizing: border-box;\n",
|
| 1207 |
+
" padding-bottom: 0.4em;\n",
|
| 1208 |
+
" background-color: var(--sklearn-color-background);\n",
|
| 1209 |
+
"}\n",
|
| 1210 |
+
"\n",
|
| 1211 |
+
"#sk-container-id-3 div.sk-container {\n",
|
| 1212 |
+
" /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
|
| 1213 |
+
" but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
|
| 1214 |
+
" so we also need the `!important` here to be able to override the\n",
|
| 1215 |
+
" default hidden behavior on the sphinx rendered scikit-learn.org.\n",
|
| 1216 |
+
" See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
|
| 1217 |
+
" display: inline-block !important;\n",
|
| 1218 |
+
" position: relative;\n",
|
| 1219 |
+
"}\n",
|
| 1220 |
+
"\n",
|
| 1221 |
+
"#sk-container-id-3 div.sk-text-repr-fallback {\n",
|
| 1222 |
+
" display: none;\n",
|
| 1223 |
+
"}\n",
|
| 1224 |
+
"\n",
|
| 1225 |
+
"div.sk-parallel-item,\n",
|
| 1226 |
+
"div.sk-serial,\n",
|
| 1227 |
+
"div.sk-item {\n",
|
| 1228 |
+
" /* draw centered vertical line to link estimators */\n",
|
| 1229 |
+
" background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
|
| 1230 |
+
" background-size: 2px 100%;\n",
|
| 1231 |
+
" background-repeat: no-repeat;\n",
|
| 1232 |
+
" background-position: center center;\n",
|
| 1233 |
+
"}\n",
|
| 1234 |
+
"\n",
|
| 1235 |
+
"/* Parallel-specific style estimator block */\n",
|
| 1236 |
+
"\n",
|
| 1237 |
+
"#sk-container-id-3 div.sk-parallel-item::after {\n",
|
| 1238 |
+
" content: \"\";\n",
|
| 1239 |
+
" width: 100%;\n",
|
| 1240 |
+
" border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
|
| 1241 |
+
" flex-grow: 1;\n",
|
| 1242 |
+
"}\n",
|
| 1243 |
+
"\n",
|
| 1244 |
+
"#sk-container-id-3 div.sk-parallel {\n",
|
| 1245 |
+
" display: flex;\n",
|
| 1246 |
+
" align-items: stretch;\n",
|
| 1247 |
+
" justify-content: center;\n",
|
| 1248 |
+
" background-color: var(--sklearn-color-background);\n",
|
| 1249 |
+
" position: relative;\n",
|
| 1250 |
+
"}\n",
|
| 1251 |
+
"\n",
|
| 1252 |
+
"#sk-container-id-3 div.sk-parallel-item {\n",
|
| 1253 |
+
" display: flex;\n",
|
| 1254 |
+
" flex-direction: column;\n",
|
| 1255 |
+
"}\n",
|
| 1256 |
+
"\n",
|
| 1257 |
+
"#sk-container-id-3 div.sk-parallel-item:first-child::after {\n",
|
| 1258 |
+
" align-self: flex-end;\n",
|
| 1259 |
+
" width: 50%;\n",
|
| 1260 |
+
"}\n",
|
| 1261 |
+
"\n",
|
| 1262 |
+
"#sk-container-id-3 div.sk-parallel-item:last-child::after {\n",
|
| 1263 |
+
" align-self: flex-start;\n",
|
| 1264 |
+
" width: 50%;\n",
|
| 1265 |
+
"}\n",
|
| 1266 |
+
"\n",
|
| 1267 |
+
"#sk-container-id-3 div.sk-parallel-item:only-child::after {\n",
|
| 1268 |
+
" width: 0;\n",
|
| 1269 |
+
"}\n",
|
| 1270 |
+
"\n",
|
| 1271 |
+
"/* Serial-specific style estimator block */\n",
|
| 1272 |
+
"\n",
|
| 1273 |
+
"#sk-container-id-3 div.sk-serial {\n",
|
| 1274 |
+
" display: flex;\n",
|
| 1275 |
+
" flex-direction: column;\n",
|
| 1276 |
+
" align-items: center;\n",
|
| 1277 |
+
" background-color: var(--sklearn-color-background);\n",
|
| 1278 |
+
" padding-right: 1em;\n",
|
| 1279 |
+
" padding-left: 1em;\n",
|
| 1280 |
+
"}\n",
|
| 1281 |
+
"\n",
|
| 1282 |
+
"\n",
|
| 1283 |
+
"/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
|
| 1284 |
+
"clickable and can be expanded/collapsed.\n",
|
| 1285 |
+
"- Pipeline and ColumnTransformer use this feature and define the default style\n",
|
| 1286 |
+
"- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
|
| 1287 |
+
"*/\n",
|
| 1288 |
+
"\n",
|
| 1289 |
+
"/* Pipeline and ColumnTransformer style (default) */\n",
|
| 1290 |
+
"\n",
|
| 1291 |
+
"#sk-container-id-3 div.sk-toggleable {\n",
|
| 1292 |
+
" /* Default theme specific background. It is overwritten whether we have a\n",
|
| 1293 |
+
" specific estimator or a Pipeline/ColumnTransformer */\n",
|
| 1294 |
+
" background-color: var(--sklearn-color-background);\n",
|
| 1295 |
+
"}\n",
|
| 1296 |
+
"\n",
|
| 1297 |
+
"/* Toggleable label */\n",
|
| 1298 |
+
"#sk-container-id-3 label.sk-toggleable__label {\n",
|
| 1299 |
+
" cursor: pointer;\n",
|
| 1300 |
+
" display: flex;\n",
|
| 1301 |
+
" width: 100%;\n",
|
| 1302 |
+
" margin-bottom: 0;\n",
|
| 1303 |
+
" padding: 0.5em;\n",
|
| 1304 |
+
" box-sizing: border-box;\n",
|
| 1305 |
+
" text-align: center;\n",
|
| 1306 |
+
" align-items: start;\n",
|
| 1307 |
+
" justify-content: space-between;\n",
|
| 1308 |
+
" gap: 0.5em;\n",
|
| 1309 |
+
"}\n",
|
| 1310 |
+
"\n",
|
| 1311 |
+
"#sk-container-id-3 label.sk-toggleable__label .caption {\n",
|
| 1312 |
+
" font-size: 0.6rem;\n",
|
| 1313 |
+
" font-weight: lighter;\n",
|
| 1314 |
+
" color: var(--sklearn-color-text-muted);\n",
|
| 1315 |
+
"}\n",
|
| 1316 |
+
"\n",
|
| 1317 |
+
"#sk-container-id-3 label.sk-toggleable__label-arrow:before {\n",
|
| 1318 |
+
" /* Arrow on the left of the label */\n",
|
| 1319 |
+
" content: \"▸\";\n",
|
| 1320 |
+
" float: left;\n",
|
| 1321 |
+
" margin-right: 0.25em;\n",
|
| 1322 |
+
" color: var(--sklearn-color-icon);\n",
|
| 1323 |
+
"}\n",
|
| 1324 |
+
"\n",
|
| 1325 |
+
"#sk-container-id-3 label.sk-toggleable__label-arrow:hover:before {\n",
|
| 1326 |
+
" color: var(--sklearn-color-text);\n",
|
| 1327 |
+
"}\n",
|
| 1328 |
+
"\n",
|
| 1329 |
+
"/* Toggleable content - dropdown */\n",
|
| 1330 |
+
"\n",
|
| 1331 |
+
"#sk-container-id-3 div.sk-toggleable__content {\n",
|
| 1332 |
+
" display: none;\n",
|
| 1333 |
+
" text-align: left;\n",
|
| 1334 |
+
" /* unfitted */\n",
|
| 1335 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
| 1336 |
+
"}\n",
|
| 1337 |
+
"\n",
|
| 1338 |
+
"#sk-container-id-3 div.sk-toggleable__content.fitted {\n",
|
| 1339 |
+
" /* fitted */\n",
|
| 1340 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
| 1341 |
+
"}\n",
|
| 1342 |
+
"\n",
|
| 1343 |
+
"#sk-container-id-3 div.sk-toggleable__content pre {\n",
|
| 1344 |
+
" margin: 0.2em;\n",
|
| 1345 |
+
" border-radius: 0.25em;\n",
|
| 1346 |
+
" color: var(--sklearn-color-text);\n",
|
| 1347 |
+
" /* unfitted */\n",
|
| 1348 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
| 1349 |
+
"}\n",
|
| 1350 |
+
"\n",
|
| 1351 |
+
"#sk-container-id-3 div.sk-toggleable__content.fitted pre {\n",
|
| 1352 |
+
" /* unfitted */\n",
|
| 1353 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
| 1354 |
+
"}\n",
|
| 1355 |
+
"\n",
|
| 1356 |
+
"#sk-container-id-3 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
|
| 1357 |
+
" /* Expand drop-down */\n",
|
| 1358 |
+
" display: block;\n",
|
| 1359 |
+
" width: 100%;\n",
|
| 1360 |
+
" overflow: visible;\n",
|
| 1361 |
+
"}\n",
|
| 1362 |
+
"\n",
|
| 1363 |
+
"#sk-container-id-3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
|
| 1364 |
+
" content: \"▾\";\n",
|
| 1365 |
+
"}\n",
|
| 1366 |
+
"\n",
|
| 1367 |
+
"/* Pipeline/ColumnTransformer-specific style */\n",
|
| 1368 |
+
"\n",
|
| 1369 |
+
"#sk-container-id-3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
| 1370 |
+
" color: var(--sklearn-color-text);\n",
|
| 1371 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
| 1372 |
+
"}\n",
|
| 1373 |
+
"\n",
|
| 1374 |
+
"#sk-container-id-3 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
| 1375 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
| 1376 |
+
"}\n",
|
| 1377 |
+
"\n",
|
| 1378 |
+
"/* Estimator-specific style */\n",
|
| 1379 |
+
"\n",
|
| 1380 |
+
"/* Colorize estimator box */\n",
|
| 1381 |
+
"#sk-container-id-3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
| 1382 |
+
" /* unfitted */\n",
|
| 1383 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
| 1384 |
+
"}\n",
|
| 1385 |
+
"\n",
|
| 1386 |
+
"#sk-container-id-3 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
|
| 1387 |
+
" /* fitted */\n",
|
| 1388 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
| 1389 |
+
"}\n",
|
| 1390 |
+
"\n",
|
| 1391 |
+
"#sk-container-id-3 div.sk-label label.sk-toggleable__label,\n",
|
| 1392 |
+
"#sk-container-id-3 div.sk-label label {\n",
|
| 1393 |
+
" /* The background is the default theme color */\n",
|
| 1394 |
+
" color: var(--sklearn-color-text-on-default-background);\n",
|
| 1395 |
+
"}\n",
|
| 1396 |
+
"\n",
|
| 1397 |
+
"/* On hover, darken the color of the background */\n",
|
| 1398 |
+
"#sk-container-id-3 div.sk-label:hover label.sk-toggleable__label {\n",
|
| 1399 |
+
" color: var(--sklearn-color-text);\n",
|
| 1400 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
| 1401 |
+
"}\n",
|
| 1402 |
+
"\n",
|
| 1403 |
+
"/* Label box, darken color on hover, fitted */\n",
|
| 1404 |
+
"#sk-container-id-3 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
|
| 1405 |
+
" color: var(--sklearn-color-text);\n",
|
| 1406 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
| 1407 |
+
"}\n",
|
| 1408 |
+
"\n",
|
| 1409 |
+
"/* Estimator label */\n",
|
| 1410 |
+
"\n",
|
| 1411 |
+
"#sk-container-id-3 div.sk-label label {\n",
|
| 1412 |
+
" font-family: monospace;\n",
|
| 1413 |
+
" font-weight: bold;\n",
|
| 1414 |
+
" display: inline-block;\n",
|
| 1415 |
+
" line-height: 1.2em;\n",
|
| 1416 |
+
"}\n",
|
| 1417 |
+
"\n",
|
| 1418 |
+
"#sk-container-id-3 div.sk-label-container {\n",
|
| 1419 |
+
" text-align: center;\n",
|
| 1420 |
+
"}\n",
|
| 1421 |
+
"\n",
|
| 1422 |
+
"/* Estimator-specific */\n",
|
| 1423 |
+
"#sk-container-id-3 div.sk-estimator {\n",
|
| 1424 |
+
" font-family: monospace;\n",
|
| 1425 |
+
" border: 1px dotted var(--sklearn-color-border-box);\n",
|
| 1426 |
+
" border-radius: 0.25em;\n",
|
| 1427 |
+
" box-sizing: border-box;\n",
|
| 1428 |
+
" margin-bottom: 0.5em;\n",
|
| 1429 |
+
" /* unfitted */\n",
|
| 1430 |
+
" background-color: var(--sklearn-color-unfitted-level-0);\n",
|
| 1431 |
+
"}\n",
|
| 1432 |
+
"\n",
|
| 1433 |
+
"#sk-container-id-3 div.sk-estimator.fitted {\n",
|
| 1434 |
+
" /* fitted */\n",
|
| 1435 |
+
" background-color: var(--sklearn-color-fitted-level-0);\n",
|
| 1436 |
+
"}\n",
|
| 1437 |
+
"\n",
|
| 1438 |
+
"/* on hover */\n",
|
| 1439 |
+
"#sk-container-id-3 div.sk-estimator:hover {\n",
|
| 1440 |
+
" /* unfitted */\n",
|
| 1441 |
+
" background-color: var(--sklearn-color-unfitted-level-2);\n",
|
| 1442 |
+
"}\n",
|
| 1443 |
+
"\n",
|
| 1444 |
+
"#sk-container-id-3 div.sk-estimator.fitted:hover {\n",
|
| 1445 |
+
" /* fitted */\n",
|
| 1446 |
+
" background-color: var(--sklearn-color-fitted-level-2);\n",
|
| 1447 |
+
"}\n",
|
| 1448 |
+
"\n",
|
| 1449 |
+
"/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
|
| 1450 |
+
"\n",
|
| 1451 |
+
"/* Common style for \"i\" and \"?\" */\n",
|
| 1452 |
+
"\n",
|
| 1453 |
+
".sk-estimator-doc-link,\n",
|
| 1454 |
+
"a:link.sk-estimator-doc-link,\n",
|
| 1455 |
+
"a:visited.sk-estimator-doc-link {\n",
|
| 1456 |
+
" float: right;\n",
|
| 1457 |
+
" font-size: smaller;\n",
|
| 1458 |
+
" line-height: 1em;\n",
|
| 1459 |
+
" font-family: monospace;\n",
|
| 1460 |
+
" background-color: var(--sklearn-color-background);\n",
|
| 1461 |
+
" border-radius: 1em;\n",
|
| 1462 |
+
" height: 1em;\n",
|
| 1463 |
+
" width: 1em;\n",
|
| 1464 |
+
" text-decoration: none !important;\n",
|
| 1465 |
+
" margin-left: 0.5em;\n",
|
| 1466 |
+
" text-align: center;\n",
|
| 1467 |
+
" /* unfitted */\n",
|
| 1468 |
+
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
| 1469 |
+
" color: var(--sklearn-color-unfitted-level-1);\n",
|
| 1470 |
+
"}\n",
|
| 1471 |
+
"\n",
|
| 1472 |
+
".sk-estimator-doc-link.fitted,\n",
|
| 1473 |
+
"a:link.sk-estimator-doc-link.fitted,\n",
|
| 1474 |
+
"a:visited.sk-estimator-doc-link.fitted {\n",
|
| 1475 |
+
" /* fitted */\n",
|
| 1476 |
+
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
| 1477 |
+
" color: var(--sklearn-color-fitted-level-1);\n",
|
| 1478 |
+
"}\n",
|
| 1479 |
+
"\n",
|
| 1480 |
+
"/* On hover */\n",
|
| 1481 |
+
"div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
|
| 1482 |
+
".sk-estimator-doc-link:hover,\n",
|
| 1483 |
+
"div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
|
| 1484 |
+
".sk-estimator-doc-link:hover {\n",
|
| 1485 |
+
" /* unfitted */\n",
|
| 1486 |
+
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
| 1487 |
+
" color: var(--sklearn-color-background);\n",
|
| 1488 |
+
" text-decoration: none;\n",
|
| 1489 |
+
"}\n",
|
| 1490 |
+
"\n",
|
| 1491 |
+
"div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
|
| 1492 |
+
".sk-estimator-doc-link.fitted:hover,\n",
|
| 1493 |
+
"div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
|
| 1494 |
+
".sk-estimator-doc-link.fitted:hover {\n",
|
| 1495 |
+
" /* fitted */\n",
|
| 1496 |
+
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
| 1497 |
+
" color: var(--sklearn-color-background);\n",
|
| 1498 |
+
" text-decoration: none;\n",
|
| 1499 |
+
"}\n",
|
| 1500 |
+
"\n",
|
| 1501 |
+
"/* Span, style for the box shown on hovering the info icon */\n",
|
| 1502 |
+
".sk-estimator-doc-link span {\n",
|
| 1503 |
+
" display: none;\n",
|
| 1504 |
+
" z-index: 9999;\n",
|
| 1505 |
+
" position: relative;\n",
|
| 1506 |
+
" font-weight: normal;\n",
|
| 1507 |
+
" right: .2ex;\n",
|
| 1508 |
+
" padding: .5ex;\n",
|
| 1509 |
+
" margin: .5ex;\n",
|
| 1510 |
+
" width: min-content;\n",
|
| 1511 |
+
" min-width: 20ex;\n",
|
| 1512 |
+
" max-width: 50ex;\n",
|
| 1513 |
+
" color: var(--sklearn-color-text);\n",
|
| 1514 |
+
" box-shadow: 2pt 2pt 4pt #999;\n",
|
| 1515 |
+
" /* unfitted */\n",
|
| 1516 |
+
" background: var(--sklearn-color-unfitted-level-0);\n",
|
| 1517 |
+
" border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
|
| 1518 |
+
"}\n",
|
| 1519 |
+
"\n",
|
| 1520 |
+
".sk-estimator-doc-link.fitted span {\n",
|
| 1521 |
+
" /* fitted */\n",
|
| 1522 |
+
" background: var(--sklearn-color-fitted-level-0);\n",
|
| 1523 |
+
" border: var(--sklearn-color-fitted-level-3);\n",
|
| 1524 |
+
"}\n",
|
| 1525 |
+
"\n",
|
| 1526 |
+
".sk-estimator-doc-link:hover span {\n",
|
| 1527 |
+
" display: block;\n",
|
| 1528 |
+
"}\n",
|
| 1529 |
+
"\n",
|
| 1530 |
+
"/* \"?\"-specific style due to the `<a>` HTML tag */\n",
|
| 1531 |
+
"\n",
|
| 1532 |
+
"#sk-container-id-3 a.estimator_doc_link {\n",
|
| 1533 |
+
" float: right;\n",
|
| 1534 |
+
" font-size: 1rem;\n",
|
| 1535 |
+
" line-height: 1em;\n",
|
| 1536 |
+
" font-family: monospace;\n",
|
| 1537 |
+
" background-color: var(--sklearn-color-background);\n",
|
| 1538 |
+
" border-radius: 1rem;\n",
|
| 1539 |
+
" height: 1rem;\n",
|
| 1540 |
+
" width: 1rem;\n",
|
| 1541 |
+
" text-decoration: none;\n",
|
| 1542 |
+
" /* unfitted */\n",
|
| 1543 |
+
" color: var(--sklearn-color-unfitted-level-1);\n",
|
| 1544 |
+
" border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
|
| 1545 |
+
"}\n",
|
| 1546 |
+
"\n",
|
| 1547 |
+
"#sk-container-id-3 a.estimator_doc_link.fitted {\n",
|
| 1548 |
+
" /* fitted */\n",
|
| 1549 |
+
" border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
|
| 1550 |
+
" color: var(--sklearn-color-fitted-level-1);\n",
|
| 1551 |
+
"}\n",
|
| 1552 |
+
"\n",
|
| 1553 |
+
"/* On hover */\n",
|
| 1554 |
+
"#sk-container-id-3 a.estimator_doc_link:hover {\n",
|
| 1555 |
+
" /* unfitted */\n",
|
| 1556 |
+
" background-color: var(--sklearn-color-unfitted-level-3);\n",
|
| 1557 |
+
" color: var(--sklearn-color-background);\n",
|
| 1558 |
+
" text-decoration: none;\n",
|
| 1559 |
+
"}\n",
|
| 1560 |
+
"\n",
|
| 1561 |
+
"#sk-container-id-3 a.estimator_doc_link.fitted:hover {\n",
|
| 1562 |
+
" /* fitted */\n",
|
| 1563 |
+
" background-color: var(--sklearn-color-fitted-level-3);\n",
|
| 1564 |
+
"}\n",
|
| 1565 |
+
"\n",
|
| 1566 |
+
".estimator-table summary {\n",
|
| 1567 |
+
" padding: .5rem;\n",
|
| 1568 |
+
" font-family: monospace;\n",
|
| 1569 |
+
" cursor: pointer;\n",
|
| 1570 |
+
"}\n",
|
| 1571 |
+
"\n",
|
| 1572 |
+
".estimator-table details[open] {\n",
|
| 1573 |
+
" padding-left: 0.1rem;\n",
|
| 1574 |
+
" padding-right: 0.1rem;\n",
|
| 1575 |
+
" padding-bottom: 0.3rem;\n",
|
| 1576 |
+
"}\n",
|
| 1577 |
+
"\n",
|
| 1578 |
+
".estimator-table .parameters-table {\n",
|
| 1579 |
+
" margin-left: auto !important;\n",
|
| 1580 |
+
" margin-right: auto !important;\n",
|
| 1581 |
+
"}\n",
|
| 1582 |
+
"\n",
|
| 1583 |
+
".estimator-table .parameters-table tr:nth-child(odd) {\n",
|
| 1584 |
+
" background-color: #fff;\n",
|
| 1585 |
+
"}\n",
|
| 1586 |
+
"\n",
|
| 1587 |
+
".estimator-table .parameters-table tr:nth-child(even) {\n",
|
| 1588 |
+
" background-color: #f6f6f6;\n",
|
| 1589 |
+
"}\n",
|
| 1590 |
+
"\n",
|
| 1591 |
+
".estimator-table .parameters-table tr:hover {\n",
|
| 1592 |
+
" background-color: #e0e0e0;\n",
|
| 1593 |
+
"}\n",
|
| 1594 |
+
"\n",
|
| 1595 |
+
".estimator-table table td {\n",
|
| 1596 |
+
" border: 1px solid rgba(106, 105, 104, 0.232);\n",
|
| 1597 |
+
"}\n",
|
| 1598 |
+
"\n",
|
| 1599 |
+
".user-set td {\n",
|
| 1600 |
+
" color:rgb(255, 94, 0);\n",
|
| 1601 |
+
" text-align: left;\n",
|
| 1602 |
+
"}\n",
|
| 1603 |
+
"\n",
|
| 1604 |
+
".user-set td.value pre {\n",
|
| 1605 |
+
" color:rgb(255, 94, 0) !important;\n",
|
| 1606 |
+
" background-color: transparent !important;\n",
|
| 1607 |
+
"}\n",
|
| 1608 |
+
"\n",
|
| 1609 |
+
".default td {\n",
|
| 1610 |
+
" color: black;\n",
|
| 1611 |
+
" text-align: left;\n",
|
| 1612 |
+
"}\n",
|
| 1613 |
+
"\n",
|
| 1614 |
+
".user-set td i,\n",
|
| 1615 |
+
".default td i {\n",
|
| 1616 |
+
" color: black;\n",
|
| 1617 |
+
"}\n",
|
| 1618 |
+
"\n",
|
| 1619 |
+
".copy-paste-icon {\n",
|
| 1620 |
+
" background-image: url();\n",
|
| 1621 |
+
" background-repeat: no-repeat;\n",
|
| 1622 |
+
" background-size: 14px 14px;\n",
|
| 1623 |
+
" background-position: 0;\n",
|
| 1624 |
+
" display: inline-block;\n",
|
| 1625 |
+
" width: 14px;\n",
|
| 1626 |
+
" height: 14px;\n",
|
| 1627 |
+
" cursor: pointer;\n",
|
| 1628 |
+
"}\n",
|
| 1629 |
+
"</style><body><div id=\"sk-container-id-3\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>Pipeline(steps=[('dictvectorizer', DictVectorizer()),\n",
|
| 1630 |
+
" ('logisticregression', LogisticRegression(solver='liblinear'))])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-7\" type=\"checkbox\" ><label for=\"sk-estimator-id-7\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow\"><div><div>Pipeline</div></div><div><a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.7/modules/generated/sklearn.pipeline.Pipeline.html\">?<span>Documentation for Pipeline</span></a><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></div></label><div class=\"sk-toggleable__content fitted\" data-param-prefix=\"\">\n",
|
| 1631 |
+
" <div class=\"estimator-table\">\n",
|
| 1632 |
+
" <details>\n",
|
| 1633 |
+
" <summary>Parameters</summary>\n",
|
| 1634 |
+
" <table class=\"parameters-table\">\n",
|
| 1635 |
+
" <tbody>\n",
|
| 1636 |
+
" \n",
|
| 1637 |
+
" <tr class=\"user-set\">\n",
|
| 1638 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1639 |
+
" onclick=\"copyToClipboard('steps',\n",
|
| 1640 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1641 |
+
" ></i></td>\n",
|
| 1642 |
+
" <td class=\"param\">steps </td>\n",
|
| 1643 |
+
" <td class=\"value\">[('dictvectorizer', ...), ('logisticregression', ...)]</td>\n",
|
| 1644 |
+
" </tr>\n",
|
| 1645 |
+
" \n",
|
| 1646 |
+
"\n",
|
| 1647 |
+
" <tr class=\"default\">\n",
|
| 1648 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1649 |
+
" onclick=\"copyToClipboard('transform_input',\n",
|
| 1650 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1651 |
+
" ></i></td>\n",
|
| 1652 |
+
" <td class=\"param\">transform_input </td>\n",
|
| 1653 |
+
" <td class=\"value\">None</td>\n",
|
| 1654 |
+
" </tr>\n",
|
| 1655 |
+
" \n",
|
| 1656 |
+
"\n",
|
| 1657 |
+
" <tr class=\"default\">\n",
|
| 1658 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1659 |
+
" onclick=\"copyToClipboard('memory',\n",
|
| 1660 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1661 |
+
" ></i></td>\n",
|
| 1662 |
+
" <td class=\"param\">memory </td>\n",
|
| 1663 |
+
" <td class=\"value\">None</td>\n",
|
| 1664 |
+
" </tr>\n",
|
| 1665 |
+
" \n",
|
| 1666 |
+
"\n",
|
| 1667 |
+
" <tr class=\"default\">\n",
|
| 1668 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1669 |
+
" onclick=\"copyToClipboard('verbose',\n",
|
| 1670 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1671 |
+
" ></i></td>\n",
|
| 1672 |
+
" <td class=\"param\">verbose </td>\n",
|
| 1673 |
+
" <td class=\"value\">False</td>\n",
|
| 1674 |
+
" </tr>\n",
|
| 1675 |
+
" \n",
|
| 1676 |
+
" </tbody>\n",
|
| 1677 |
+
" </table>\n",
|
| 1678 |
+
" </details>\n",
|
| 1679 |
+
" </div>\n",
|
| 1680 |
+
" </div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-8\" type=\"checkbox\" ><label for=\"sk-estimator-id-8\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow\"><div><div>DictVectorizer</div></div><div><a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.7/modules/generated/sklearn.feature_extraction.DictVectorizer.html\">?<span>Documentation for DictVectorizer</span></a></div></label><div class=\"sk-toggleable__content fitted\" data-param-prefix=\"dictvectorizer__\">\n",
|
| 1681 |
+
" <div class=\"estimator-table\">\n",
|
| 1682 |
+
" <details>\n",
|
| 1683 |
+
" <summary>Parameters</summary>\n",
|
| 1684 |
+
" <table class=\"parameters-table\">\n",
|
| 1685 |
+
" <tbody>\n",
|
| 1686 |
+
" \n",
|
| 1687 |
+
" <tr class=\"default\">\n",
|
| 1688 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1689 |
+
" onclick=\"copyToClipboard('dtype',\n",
|
| 1690 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1691 |
+
" ></i></td>\n",
|
| 1692 |
+
" <td class=\"param\">dtype </td>\n",
|
| 1693 |
+
" <td class=\"value\"><class 'numpy.float64'></td>\n",
|
| 1694 |
+
" </tr>\n",
|
| 1695 |
+
" \n",
|
| 1696 |
+
"\n",
|
| 1697 |
+
" <tr class=\"default\">\n",
|
| 1698 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1699 |
+
" onclick=\"copyToClipboard('separator',\n",
|
| 1700 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1701 |
+
" ></i></td>\n",
|
| 1702 |
+
" <td class=\"param\">separator </td>\n",
|
| 1703 |
+
" <td class=\"value\">'='</td>\n",
|
| 1704 |
+
" </tr>\n",
|
| 1705 |
+
" \n",
|
| 1706 |
+
"\n",
|
| 1707 |
+
" <tr class=\"default\">\n",
|
| 1708 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1709 |
+
" onclick=\"copyToClipboard('sparse',\n",
|
| 1710 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1711 |
+
" ></i></td>\n",
|
| 1712 |
+
" <td class=\"param\">sparse </td>\n",
|
| 1713 |
+
" <td class=\"value\">True</td>\n",
|
| 1714 |
+
" </tr>\n",
|
| 1715 |
+
" \n",
|
| 1716 |
+
"\n",
|
| 1717 |
+
" <tr class=\"default\">\n",
|
| 1718 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1719 |
+
" onclick=\"copyToClipboard('sort',\n",
|
| 1720 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1721 |
+
" ></i></td>\n",
|
| 1722 |
+
" <td class=\"param\">sort </td>\n",
|
| 1723 |
+
" <td class=\"value\">True</td>\n",
|
| 1724 |
+
" </tr>\n",
|
| 1725 |
+
" \n",
|
| 1726 |
+
" </tbody>\n",
|
| 1727 |
+
" </table>\n",
|
| 1728 |
+
" </details>\n",
|
| 1729 |
+
" </div>\n",
|
| 1730 |
+
" </div></div></div><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-9\" type=\"checkbox\" ><label for=\"sk-estimator-id-9\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow\"><div><div>LogisticRegression</div></div><div><a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.7/modules/generated/sklearn.linear_model.LogisticRegression.html\">?<span>Documentation for LogisticRegression</span></a></div></label><div class=\"sk-toggleable__content fitted\" data-param-prefix=\"logisticregression__\">\n",
|
| 1731 |
+
" <div class=\"estimator-table\">\n",
|
| 1732 |
+
" <details>\n",
|
| 1733 |
+
" <summary>Parameters</summary>\n",
|
| 1734 |
+
" <table class=\"parameters-table\">\n",
|
| 1735 |
+
" <tbody>\n",
|
| 1736 |
+
" \n",
|
| 1737 |
+
" <tr class=\"default\">\n",
|
| 1738 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1739 |
+
" onclick=\"copyToClipboard('penalty',\n",
|
| 1740 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1741 |
+
" ></i></td>\n",
|
| 1742 |
+
" <td class=\"param\">penalty </td>\n",
|
| 1743 |
+
" <td class=\"value\">'l2'</td>\n",
|
| 1744 |
+
" </tr>\n",
|
| 1745 |
+
" \n",
|
| 1746 |
+
"\n",
|
| 1747 |
+
" <tr class=\"default\">\n",
|
| 1748 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1749 |
+
" onclick=\"copyToClipboard('dual',\n",
|
| 1750 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1751 |
+
" ></i></td>\n",
|
| 1752 |
+
" <td class=\"param\">dual </td>\n",
|
| 1753 |
+
" <td class=\"value\">False</td>\n",
|
| 1754 |
+
" </tr>\n",
|
| 1755 |
+
" \n",
|
| 1756 |
+
"\n",
|
| 1757 |
+
" <tr class=\"default\">\n",
|
| 1758 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1759 |
+
" onclick=\"copyToClipboard('tol',\n",
|
| 1760 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1761 |
+
" ></i></td>\n",
|
| 1762 |
+
" <td class=\"param\">tol </td>\n",
|
| 1763 |
+
" <td class=\"value\">0.0001</td>\n",
|
| 1764 |
+
" </tr>\n",
|
| 1765 |
+
" \n",
|
| 1766 |
+
"\n",
|
| 1767 |
+
" <tr class=\"default\">\n",
|
| 1768 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1769 |
+
" onclick=\"copyToClipboard('C',\n",
|
| 1770 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1771 |
+
" ></i></td>\n",
|
| 1772 |
+
" <td class=\"param\">C </td>\n",
|
| 1773 |
+
" <td class=\"value\">1.0</td>\n",
|
| 1774 |
+
" </tr>\n",
|
| 1775 |
+
" \n",
|
| 1776 |
+
"\n",
|
| 1777 |
+
" <tr class=\"default\">\n",
|
| 1778 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1779 |
+
" onclick=\"copyToClipboard('fit_intercept',\n",
|
| 1780 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1781 |
+
" ></i></td>\n",
|
| 1782 |
+
" <td class=\"param\">fit_intercept </td>\n",
|
| 1783 |
+
" <td class=\"value\">True</td>\n",
|
| 1784 |
+
" </tr>\n",
|
| 1785 |
+
" \n",
|
| 1786 |
+
"\n",
|
| 1787 |
+
" <tr class=\"default\">\n",
|
| 1788 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1789 |
+
" onclick=\"copyToClipboard('intercept_scaling',\n",
|
| 1790 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1791 |
+
" ></i></td>\n",
|
| 1792 |
+
" <td class=\"param\">intercept_scaling </td>\n",
|
| 1793 |
+
" <td class=\"value\">1</td>\n",
|
| 1794 |
+
" </tr>\n",
|
| 1795 |
+
" \n",
|
| 1796 |
+
"\n",
|
| 1797 |
+
" <tr class=\"default\">\n",
|
| 1798 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1799 |
+
" onclick=\"copyToClipboard('class_weight',\n",
|
| 1800 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1801 |
+
" ></i></td>\n",
|
| 1802 |
+
" <td class=\"param\">class_weight </td>\n",
|
| 1803 |
+
" <td class=\"value\">None</td>\n",
|
| 1804 |
+
" </tr>\n",
|
| 1805 |
+
" \n",
|
| 1806 |
+
"\n",
|
| 1807 |
+
" <tr class=\"default\">\n",
|
| 1808 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1809 |
+
" onclick=\"copyToClipboard('random_state',\n",
|
| 1810 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1811 |
+
" ></i></td>\n",
|
| 1812 |
+
" <td class=\"param\">random_state </td>\n",
|
| 1813 |
+
" <td class=\"value\">None</td>\n",
|
| 1814 |
+
" </tr>\n",
|
| 1815 |
+
" \n",
|
| 1816 |
+
"\n",
|
| 1817 |
+
" <tr class=\"user-set\">\n",
|
| 1818 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1819 |
+
" onclick=\"copyToClipboard('solver',\n",
|
| 1820 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1821 |
+
" ></i></td>\n",
|
| 1822 |
+
" <td class=\"param\">solver </td>\n",
|
| 1823 |
+
" <td class=\"value\">'liblinear'</td>\n",
|
| 1824 |
+
" </tr>\n",
|
| 1825 |
+
" \n",
|
| 1826 |
+
"\n",
|
| 1827 |
+
" <tr class=\"default\">\n",
|
| 1828 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1829 |
+
" onclick=\"copyToClipboard('max_iter',\n",
|
| 1830 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1831 |
+
" ></i></td>\n",
|
| 1832 |
+
" <td class=\"param\">max_iter </td>\n",
|
| 1833 |
+
" <td class=\"value\">100</td>\n",
|
| 1834 |
+
" </tr>\n",
|
| 1835 |
+
" \n",
|
| 1836 |
+
"\n",
|
| 1837 |
+
" <tr class=\"default\">\n",
|
| 1838 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1839 |
+
" onclick=\"copyToClipboard('multi_class',\n",
|
| 1840 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1841 |
+
" ></i></td>\n",
|
| 1842 |
+
" <td class=\"param\">multi_class </td>\n",
|
| 1843 |
+
" <td class=\"value\">'deprecated'</td>\n",
|
| 1844 |
+
" </tr>\n",
|
| 1845 |
+
" \n",
|
| 1846 |
+
"\n",
|
| 1847 |
+
" <tr class=\"default\">\n",
|
| 1848 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1849 |
+
" onclick=\"copyToClipboard('verbose',\n",
|
| 1850 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1851 |
+
" ></i></td>\n",
|
| 1852 |
+
" <td class=\"param\">verbose </td>\n",
|
| 1853 |
+
" <td class=\"value\">0</td>\n",
|
| 1854 |
+
" </tr>\n",
|
| 1855 |
+
" \n",
|
| 1856 |
+
"\n",
|
| 1857 |
+
" <tr class=\"default\">\n",
|
| 1858 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1859 |
+
" onclick=\"copyToClipboard('warm_start',\n",
|
| 1860 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1861 |
+
" ></i></td>\n",
|
| 1862 |
+
" <td class=\"param\">warm_start </td>\n",
|
| 1863 |
+
" <td class=\"value\">False</td>\n",
|
| 1864 |
+
" </tr>\n",
|
| 1865 |
+
" \n",
|
| 1866 |
+
"\n",
|
| 1867 |
+
" <tr class=\"default\">\n",
|
| 1868 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1869 |
+
" onclick=\"copyToClipboard('n_jobs',\n",
|
| 1870 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1871 |
+
" ></i></td>\n",
|
| 1872 |
+
" <td class=\"param\">n_jobs </td>\n",
|
| 1873 |
+
" <td class=\"value\">None</td>\n",
|
| 1874 |
+
" </tr>\n",
|
| 1875 |
+
" \n",
|
| 1876 |
+
"\n",
|
| 1877 |
+
" <tr class=\"default\">\n",
|
| 1878 |
+
" <td><i class=\"copy-paste-icon\"\n",
|
| 1879 |
+
" onclick=\"copyToClipboard('l1_ratio',\n",
|
| 1880 |
+
" this.parentElement.nextElementSibling)\"\n",
|
| 1881 |
+
" ></i></td>\n",
|
| 1882 |
+
" <td class=\"param\">l1_ratio </td>\n",
|
| 1883 |
+
" <td class=\"value\">None</td>\n",
|
| 1884 |
+
" </tr>\n",
|
| 1885 |
+
" \n",
|
| 1886 |
+
" </tbody>\n",
|
| 1887 |
+
" </table>\n",
|
| 1888 |
+
" </details>\n",
|
| 1889 |
+
" </div>\n",
|
| 1890 |
+
" </div></div></div></div></div></div></div><script>function copyToClipboard(text, element) {\n",
|
| 1891 |
+
" // Get the parameter prefix from the closest toggleable content\n",
|
| 1892 |
+
" const toggleableContent = element.closest('.sk-toggleable__content');\n",
|
| 1893 |
+
" const paramPrefix = toggleableContent ? toggleableContent.dataset.paramPrefix : '';\n",
|
| 1894 |
+
" const fullParamName = paramPrefix ? `${paramPrefix}${text}` : text;\n",
|
| 1895 |
+
"\n",
|
| 1896 |
+
" const originalStyle = element.style;\n",
|
| 1897 |
+
" const computedStyle = window.getComputedStyle(element);\n",
|
| 1898 |
+
" const originalWidth = computedStyle.width;\n",
|
| 1899 |
+
" const originalHTML = element.innerHTML.replace('Copied!', '');\n",
|
| 1900 |
+
"\n",
|
| 1901 |
+
" navigator.clipboard.writeText(fullParamName)\n",
|
| 1902 |
+
" .then(() => {\n",
|
| 1903 |
+
" element.style.width = originalWidth;\n",
|
| 1904 |
+
" element.style.color = 'green';\n",
|
| 1905 |
+
" element.innerHTML = \"Copied!\";\n",
|
| 1906 |
+
"\n",
|
| 1907 |
+
" setTimeout(() => {\n",
|
| 1908 |
+
" element.innerHTML = originalHTML;\n",
|
| 1909 |
+
" element.style = originalStyle;\n",
|
| 1910 |
+
" }, 2000);\n",
|
| 1911 |
+
" })\n",
|
| 1912 |
+
" .catch(err => {\n",
|
| 1913 |
+
" console.error('Failed to copy:', err);\n",
|
| 1914 |
+
" element.style.color = 'red';\n",
|
| 1915 |
+
" element.innerHTML = \"Failed!\";\n",
|
| 1916 |
+
" setTimeout(() => {\n",
|
| 1917 |
+
" element.innerHTML = originalHTML;\n",
|
| 1918 |
+
" element.style = originalStyle;\n",
|
| 1919 |
+
" }, 2000);\n",
|
| 1920 |
+
" });\n",
|
| 1921 |
+
" return false;\n",
|
| 1922 |
+
"}\n",
|
| 1923 |
+
"\n",
|
| 1924 |
+
"document.querySelectorAll('.fa-regular.fa-copy').forEach(function(element) {\n",
|
| 1925 |
+
" const toggleableContent = element.closest('.sk-toggleable__content');\n",
|
| 1926 |
+
" const paramPrefix = toggleableContent ? toggleableContent.dataset.paramPrefix : '';\n",
|
| 1927 |
+
" const paramName = element.parentElement.nextElementSibling.textContent.trim();\n",
|
| 1928 |
+
" const fullParamName = paramPrefix ? `${paramPrefix}${paramName}` : paramName;\n",
|
| 1929 |
+
"\n",
|
| 1930 |
+
" element.setAttribute('title', fullParamName);\n",
|
| 1931 |
+
"});\n",
|
| 1932 |
+
"</script></body>"
|
| 1933 |
+
],
|
| 1934 |
+
"text/plain": [
|
| 1935 |
+
"Pipeline(steps=[('dictvectorizer', DictVectorizer()),\n",
|
| 1936 |
+
" ('logisticregression', LogisticRegression(solver='liblinear'))])"
|
| 1937 |
+
]
|
| 1938 |
+
},
|
| 1939 |
+
"execution_count": 32,
|
| 1940 |
+
"metadata": {},
|
| 1941 |
+
"output_type": "execute_result"
|
| 1942 |
+
}
|
| 1943 |
+
],
|
| 1944 |
+
"source": [
|
| 1945 |
+
"model"
|
| 1946 |
+
]
|
| 1947 |
+
},
|
| 1948 |
+
{
|
| 1949 |
+
"cell_type": "code",
|
| 1950 |
+
"execution_count": null,
|
| 1951 |
+
"id": "e4452cb3-f563-430c-ae69-09e2a5e24475",
|
| 1952 |
+
"metadata": {},
|
| 1953 |
+
"outputs": [],
|
| 1954 |
+
"source": []
|
| 1955 |
+
},
|
| 1956 |
+
{
|
| 1957 |
+
"cell_type": "code",
|
| 1958 |
+
"execution_count": null,
|
| 1959 |
+
"id": "8720b7f9-438b-436e-8151-b6b4e64850bd",
|
| 1960 |
+
"metadata": {},
|
| 1961 |
+
"outputs": [],
|
| 1962 |
+
"source": []
|
| 1963 |
+
}
|
| 1964 |
+
],
|
| 1965 |
+
"metadata": {
|
| 1966 |
+
"kernelspec": {
|
| 1967 |
+
"display_name": "Python 3",
|
| 1968 |
+
"language": "python",
|
| 1969 |
+
"name": "python3"
|
| 1970 |
+
},
|
| 1971 |
+
"language_info": {
|
| 1972 |
+
"codemirror_mode": {
|
| 1973 |
+
"name": "ipython",
|
| 1974 |
+
"version": 3
|
| 1975 |
+
},
|
| 1976 |
+
"file_extension": ".py",
|
| 1977 |
+
"mimetype": "text/x-python",
|
| 1978 |
+
"name": "python",
|
| 1979 |
+
"nbconvert_exporter": "python",
|
| 1980 |
+
"pygments_lexer": "ipython3",
|
| 1981 |
+
"version": "3.12.1"
|
| 1982 |
+
}
|
| 1983 |
+
},
|
| 1984 |
+
"nbformat": 4,
|
| 1985 |
+
"nbformat_minor": 5
|
| 1986 |
+
}
|