Spaces:
Running
Running
# This code is basically a copy and paste from the original cocoapi repo: | |
# https://github.com/cocodataset/cocoapi/blob/master/PythonAPI/pycocotools/cocoeval.py | |
# with the following changes have been made: | |
# * Replace the usage of mask (maskUtils) by MaskEvaluator. | |
# * Comment out prints in the evaluate() function. | |
# * Include a return of the function evaluate. Inspired | |
# by @ybelkada (https://huggingface.co/spaces/ybelkada/cocoevaluate/) | |
__author__ = "tsungyi" | |
import copy | |
import datetime | |
import time | |
from collections import defaultdict | |
from packaging import version | |
import numpy as np | |
if version.parse(np.__version__) < version.parse("1.24"): | |
dtype_float = np.float | |
else: | |
dtype_float = np.float32 | |
from .mask_utils import MaskEvaluator as maskUtils | |
class COCOeval: | |
# Interface for evaluating detection on the Microsoft COCO dataset. | |
# | |
# The usage for CocoEval is as follows: | |
# cocoGt=..., cocoDt=... # load dataset and results | |
# E = CocoEval(cocoGt,cocoDt); # initialize CocoEval object | |
# E.params.recThrs = ...; # set parameters as desired | |
# E.evaluate(); # run per image evaluation | |
# E.accumulate(); # accumulate per image results | |
# E.summarize(); # display summary metrics of results | |
# For example usage see evalDemo.m and http://mscoco.org/. | |
# | |
# The evaluation parameters are as follows (defaults in brackets): | |
# imgIds - [all] N img ids to use for evaluation | |
# catIds - [all] K cat ids to use for evaluation | |
# iouThrs - [.5:.05:.95] T=10 IoU thresholds for evaluation | |
# recThrs - [0:.01:1] R=101 recall thresholds for evaluation | |
# areaRng - [...] A=4 object area ranges for evaluation | |
# maxDets - [1 10 100] M=3 thresholds on max detections per image | |
# iouType - ['segm'] set iouType to 'segm', 'bbox' or 'keypoints' | |
# iouType replaced the now DEPRECATED useSegm parameter. | |
# useCats - [1] if true use category labels for evaluation | |
# Note: if useCats=0 category labels are ignored as in proposal scoring. | |
# Note: multiple areaRngs [Ax2] and maxDets [Mx1] can be specified. | |
# | |
# evaluate(): evaluates detections on every image and every category and | |
# concats the results into the "evalImgs" with fields: | |
# dtIds - [1xD] id for each of the D detections (dt) | |
# gtIds - [1xG] id for each of the G ground truths (gt) | |
# dtMatches - [TxD] matching gt id at each IoU or 0 | |
# gtMatches - [TxG] matching dt id at each IoU or 0 | |
# dtScores - [1xD] confidence of each dt | |
# gtIgnore - [1xG] ignore flag for each gt | |
# dtIgnore - [TxD] ignore flag for each dt at each IoU | |
# | |
# accumulate(): accumulates the per-image, per-category evaluation | |
# results in "evalImgs" into the dictionary "eval" with fields: | |
# params - parameters used for evaluation | |
# date - date evaluation was performed | |
# counts - [T,R,K,A,M] parameter dimensions (see above) | |
# precision - [TxRxKxAxM] precision for every evaluation setting | |
# recall - [TxKxAxM] max recall for every evaluation setting | |
# Note: precision and recall==-1 for settings with no gt objects. | |
# | |
# See also coco, mask, pycocoDemo, pycocoEvalDemo | |
# | |
# Microsoft COCO Toolbox. version 2.0 | |
# Data, paper, and tutorials available at: http://mscoco.org/ | |
# Code written by Piotr Dollar and Tsung-Yi Lin, 2015. | |
# Licensed under the Simplified BSD License [see coco/license.txt] | |
def __init__(self, cocoGt=None, cocoDt=None, iouType="segm"): | |
""" | |
Initialize CocoEval using coco APIs for gt and dt | |
:param cocoGt: coco object with ground truth annotations | |
:param cocoDt: coco object with detection results | |
:return: None | |
""" | |
if not iouType: | |
print("iouType not specified. use default iouType segm") | |
self.cocoGt = cocoGt # ground truth COCO API | |
self.cocoDt = cocoDt # detections COCO API | |
self.evalImgs = defaultdict( | |
list | |
) # per-image per-category evaluation results [KxAxI] elements | |
self.eval = {} # accumulated evaluation results | |
self._gts = defaultdict(list) # gt for evaluation | |
self._dts = defaultdict(list) # dt for evaluation | |
self.params = Params(iouType=iouType) # parameters | |
self._paramsEval = {} # parameters for evaluation | |
self.stats = [] # result summarization | |
self.ious = {} # ious between all gts and dts | |
if not cocoGt is None: | |
self.params.imgIds = sorted(cocoGt.getImgIds()) | |
self.params.catIds = sorted(cocoGt.getCatIds()) | |
def _prepare(self): | |
""" | |
Prepare ._gts and ._dts for evaluation based on params | |
:return: None | |
""" | |
def _toMask(anns, coco): | |
# modify ann['segmentation'] by reference | |
for ann in anns: | |
rle = coco.annToRLE(ann) | |
ann["segmentation"] = rle | |
p = self.params | |
if p.useCats: | |
gts = self.cocoGt.loadAnns( | |
self.cocoGt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds) | |
) | |
dts = self.cocoDt.loadAnns( | |
self.cocoDt.getAnnIds(imgIds=p.imgIds, catIds=p.catIds) | |
) | |
else: | |
gts = self.cocoGt.loadAnns(self.cocoGt.getAnnIds(imgIds=p.imgIds)) | |
dts = self.cocoDt.loadAnns(self.cocoDt.getAnnIds(imgIds=p.imgIds)) | |
# convert ground truth to mask if iouType == 'segm' | |
if p.iouType == "segm": | |
_toMask(gts, self.cocoGt) | |
_toMask(dts, self.cocoDt) | |
# set ignore flag | |
for gt in gts: | |
gt["ignore"] = gt["ignore"] if "ignore" in gt else 0 | |
gt["ignore"] = "iscrowd" in gt and gt["iscrowd"] | |
if p.iouType == "keypoints": | |
gt["ignore"] = (gt["num_keypoints"] == 0) or gt["ignore"] | |
self._gts = defaultdict(list) # gt for evaluation | |
self._dts = defaultdict(list) # dt for evaluation | |
for gt in gts: | |
self._gts[gt["image_id"], gt["category_id"]].append(gt) | |
for dt in dts: | |
self._dts[dt["image_id"], dt["category_id"]].append(dt) | |
self.evalImgs = defaultdict(list) # per-image per-category evaluation results | |
self.eval = {} # accumulated evaluation results | |
def evaluate(self): | |
""" | |
Run per image evaluation on given images and store results (a list of dict) in self.evalImgs | |
:return: None | |
""" | |
# tic = time.time() | |
# print("Running per image evaluation...") | |
p = self.params | |
# add backward compatibility if useSegm is specified in params | |
if not p.useSegm is None: | |
p.iouType = "segm" if p.useSegm == 1 else "bbox" | |
# print( | |
# "useSegm (deprecated) is not None. Running {} evaluation".format( | |
# p.iouType | |
# ) | |
# ) | |
# print("Evaluate annotation type *{}*".format(p.iouType)) | |
p.imgIds = list(np.unique(p.imgIds)) | |
if p.useCats: | |
p.catIds = list(np.unique(p.catIds)) | |
p.maxDets = sorted(p.maxDets) | |
self.params = p | |
self._prepare() | |
# loop through images, area range, max detection number | |
catIds = p.catIds if p.useCats else [-1] | |
if p.iouType == "segm" or p.iouType == "bbox": | |
computeIoU = self.computeIoU | |
elif p.iouType == "keypoints": | |
computeIoU = self.computeOks | |
self.ious = { | |
(imgId, catId): computeIoU(imgId, catId) | |
for imgId in p.imgIds | |
for catId in catIds | |
} | |
evaluateImg = self.evaluateImg | |
maxDet = p.maxDets[-1] | |
self.evalImgs = [ | |
evaluateImg(imgId, catId, areaRng, maxDet) | |
for catId in catIds | |
for areaRng in p.areaRng | |
for imgId in p.imgIds | |
] | |
self._paramsEval = copy.deepcopy(self.params) | |
ret_evalImgs = np.asarray(self.evalImgs).reshape( | |
len(catIds), len(p.areaRng), len(p.imgIds) | |
) | |
# toc = time.time() | |
# print("DONE (t={:0.2f}s).".format(toc - tic)) | |
return ret_evalImgs | |
def computeIoU(self, imgId, catId): | |
p = self.params | |
if p.useCats: | |
gt = self._gts[imgId, catId] | |
dt = self._dts[imgId, catId] | |
else: | |
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]] | |
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]] | |
if len(gt) == 0 and len(dt) == 0: | |
return [] | |
inds = np.argsort([-d["score"] for d in dt], kind="mergesort") | |
dt = [dt[i] for i in inds] | |
if len(dt) > p.maxDets[-1]: | |
dt = dt[0 : p.maxDets[-1]] | |
if p.iouType == "segm": | |
g = [g["segmentation"] for g in gt] | |
d = [d["segmentation"] for d in dt] | |
elif p.iouType == "bbox": | |
g = [g["bbox"] for g in gt] | |
d = [d["bbox"] for d in dt] | |
else: | |
raise Exception("unknown iouType for iou computation") | |
# compute iou between each dt and gt region | |
iscrowd = [int(o["iscrowd"]) for o in gt] | |
ious = maskUtils.iou(d, g, iscrowd) | |
return ious | |
def computeOks(self, imgId, catId): | |
p = self.params | |
# dimention here should be Nxm | |
gts = self._gts[imgId, catId] | |
dts = self._dts[imgId, catId] | |
inds = np.argsort([-d["score"] for d in dts], kind="mergesort") | |
dts = [dts[i] for i in inds] | |
if len(dts) > p.maxDets[-1]: | |
dts = dts[0 : p.maxDets[-1]] | |
# if len(gts) == 0 and len(dts) == 0: | |
if len(gts) == 0 or len(dts) == 0: | |
return [] | |
ious = np.zeros((len(dts), len(gts))) | |
sigmas = p.kpt_oks_sigmas | |
vars = (sigmas * 2) ** 2 | |
k = len(sigmas) | |
# compute oks between each detection and ground truth object | |
for j, gt in enumerate(gts): | |
# create bounds for ignore regions(double the gt bbox) | |
g = np.array(gt["keypoints"]) | |
xg = g[0::3] | |
yg = g[1::3] | |
vg = g[2::3] | |
k1 = np.count_nonzero(vg > 0) | |
bb = gt["bbox"] | |
x0 = bb[0] - bb[2] | |
x1 = bb[0] + bb[2] * 2 | |
y0 = bb[1] - bb[3] | |
y1 = bb[1] + bb[3] * 2 | |
for i, dt in enumerate(dts): | |
d = np.array(dt["keypoints"]) | |
xd = d[0::3] | |
yd = d[1::3] | |
if k1 > 0: | |
# measure the per-keypoint distance if keypoints visible | |
dx = xd - xg | |
dy = yd - yg | |
else: | |
# measure minimum distance to keypoints in (x0,y0) & (x1,y1) | |
z = np.zeros((k)) | |
dx = np.max((z, x0 - xd), axis=0) + np.max((z, xd - x1), axis=0) | |
dy = np.max((z, y0 - yd), axis=0) + np.max((z, yd - y1), axis=0) | |
e = (dx**2 + dy**2) / vars / (gt["area"] + np.spacing(1)) / 2 | |
if k1 > 0: | |
e = e[vg > 0] | |
ious[i, j] = np.sum(np.exp(-e)) / e.shape[0] | |
return ious | |
def evaluateImg(self, imgId, catId, aRng, maxDet): | |
""" | |
perform evaluation for single category and image | |
:return: dict (single image results) | |
""" | |
p = self.params | |
if p.useCats: | |
gt = self._gts[imgId, catId] | |
dt = self._dts[imgId, catId] | |
else: | |
gt = [_ for cId in p.catIds for _ in self._gts[imgId, cId]] | |
dt = [_ for cId in p.catIds for _ in self._dts[imgId, cId]] | |
if len(gt) == 0 and len(dt) == 0: | |
return None | |
for g in gt: | |
if g["ignore"] or (g["area"] < aRng[0] or g["area"] > aRng[1]): | |
g["_ignore"] = 1 | |
else: | |
g["_ignore"] = 0 | |
# sort dt highest score first, sort gt ignore last | |
gtind = np.argsort([g["_ignore"] for g in gt], kind="mergesort") | |
gt = [gt[i] for i in gtind] | |
dtind = np.argsort([-d["score"] for d in dt], kind="mergesort") | |
dt = [dt[i] for i in dtind[0:maxDet]] | |
iscrowd = [int(o["iscrowd"]) for o in gt] | |
# load computed ious | |
ious = ( | |
self.ious[imgId, catId][:, gtind] | |
if len(self.ious[imgId, catId]) > 0 | |
else self.ious[imgId, catId] | |
) | |
T = len(p.iouThrs) | |
G = len(gt) | |
D = len(dt) | |
gtm = np.zeros((T, G)) | |
dtm = np.zeros((T, D)) | |
gtIg = np.array([g["_ignore"] for g in gt]) | |
dtIg = np.zeros((T, D)) | |
if not len(ious) == 0: | |
for tind, t in enumerate(p.iouThrs): | |
for dind, d in enumerate(dt): | |
# information about best match so far (m=-1 -> unmatched) | |
iou = min([t, 1 - 1e-10]) | |
m = -1 | |
for gind, g in enumerate(gt): | |
# if this gt already matched, and not a crowd, continue | |
if gtm[tind, gind] > 0 and not iscrowd[gind]: | |
continue | |
# if dt matched to reg gt, and on ignore gt, stop | |
if m > -1 and gtIg[m] == 0 and gtIg[gind] == 1: | |
break | |
# continue to next gt unless better match made | |
if ious[dind, gind] < iou: | |
continue | |
# if match successful and best so far, store appropriately | |
iou = ious[dind, gind] | |
m = gind | |
# if match made store id of match for both dt and gt | |
if m == -1: | |
continue | |
dtIg[tind, dind] = gtIg[m] | |
dtm[tind, dind] = gt[m]["id"] | |
gtm[tind, m] = d["id"] | |
# set unmatched detections outside of area range to ignore | |
a = np.array([d["area"] < aRng[0] or d["area"] > aRng[1] for d in dt]).reshape( | |
(1, len(dt)) | |
) | |
dtIg = np.logical_or(dtIg, np.logical_and(dtm == 0, np.repeat(a, T, 0))) | |
# store results for given image and category | |
return { | |
"image_id": imgId, | |
"category_id": catId, | |
"aRng": aRng, | |
"maxDet": maxDet, | |
"dtIds": [d["id"] for d in dt], | |
"gtIds": [g["id"] for g in gt], | |
"dtMatches": dtm, | |
"gtMatches": gtm, | |
"dtScores": [d["score"] for d in dt], | |
"gtIgnore": gtIg, | |
"dtIgnore": dtIg, | |
} | |
def accumulate(self, p=None): | |
""" | |
Accumulate per image evaluation results and store the result in self.eval | |
:param p: input params for evaluation | |
:return: None | |
""" | |
print("Accumulating evaluation results...") | |
tic = time.time() | |
if not self.evalImgs: | |
print("Please run evaluate() first") | |
# allows input customized parameters | |
if p is None: | |
p = self.params | |
p.catIds = p.catIds if p.useCats == 1 else [-1] | |
T = len(p.iouThrs) | |
R = len(p.recThrs) | |
K = len(p.catIds) if p.useCats else 1 | |
A = len(p.areaRng) | |
M = len(p.maxDets) | |
precision = -np.ones( | |
(T, R, K, A, M) | |
) # -1 for the precision of absent categories | |
recall = -np.ones((T, K, A, M)) | |
scores = -np.ones((T, R, K, A, M)) | |
# create dictionary for future indexing | |
_pe = self._paramsEval | |
catIds = _pe.catIds if _pe.useCats else [-1] | |
setK = set(catIds) | |
setA = set(map(tuple, _pe.areaRng)) | |
setM = set(_pe.maxDets) | |
setI = set(_pe.imgIds) | |
# get inds to evaluate | |
k_list = [n for n, k in enumerate(p.catIds) if k in setK] | |
m_list = [m for n, m in enumerate(p.maxDets) if m in setM] | |
a_list = [ | |
n for n, a in enumerate(map(lambda x: tuple(x), p.areaRng)) if a in setA | |
] | |
i_list = [n for n, i in enumerate(p.imgIds) if i in setI] | |
I0 = len(_pe.imgIds) | |
A0 = len(_pe.areaRng) | |
# retrieve E at each category, area range, and max number of detections | |
for k, k0 in enumerate(k_list): | |
Nk = k0 * A0 * I0 | |
for a, a0 in enumerate(a_list): | |
Na = a0 * I0 | |
for m, maxDet in enumerate(m_list): | |
E = [self.evalImgs[Nk + Na + i] for i in i_list] | |
E = [e for e in E if not e is None] | |
if len(E) == 0: | |
continue | |
dtScores = np.concatenate([e["dtScores"][0:maxDet] for e in E]) | |
# different sorting method generates slightly different results. | |
# mergesort is used to be consistent as Matlab implementation. | |
inds = np.argsort(-dtScores, kind="mergesort") | |
dtScoresSorted = dtScores[inds] | |
dtm = np.concatenate( | |
[e["dtMatches"][:, 0:maxDet] for e in E], axis=1 | |
)[:, inds] | |
dtIg = np.concatenate( | |
[e["dtIgnore"][:, 0:maxDet] for e in E], axis=1 | |
)[:, inds] | |
gtIg = np.concatenate([e["gtIgnore"] for e in E]) | |
npig = np.count_nonzero(gtIg == 0) | |
if npig == 0: | |
continue | |
tps = np.logical_and(dtm, np.logical_not(dtIg)) | |
fps = np.logical_and(np.logical_not(dtm), np.logical_not(dtIg)) | |
tp_sum = np.cumsum(tps, axis=1).astype(dtype=dtype_float) | |
fp_sum = np.cumsum(fps, axis=1).astype(dtype=dtype_float) | |
for t, (tp, fp) in enumerate(zip(tp_sum, fp_sum)): | |
tp = np.array(tp) | |
fp = np.array(fp) | |
nd = len(tp) | |
rc = tp / npig | |
pr = tp / (fp + tp + np.spacing(1)) | |
q = np.zeros((R,)) | |
ss = np.zeros((R,)) | |
if nd: | |
recall[t, k, a, m] = rc[-1] | |
else: | |
recall[t, k, a, m] = 0 | |
# numpy is slow without cython optimization for accessing elements | |
# use python array gets significant speed improvement | |
pr = pr.tolist() | |
q = q.tolist() | |
for i in range(nd - 1, 0, -1): | |
if pr[i] > pr[i - 1]: | |
pr[i - 1] = pr[i] | |
inds = np.searchsorted(rc, p.recThrs, side="left") | |
try: | |
for ri, pi in enumerate(inds): | |
q[ri] = pr[pi] | |
ss[ri] = dtScoresSorted[pi] | |
except: | |
pass | |
precision[t, :, k, a, m] = np.array(q) | |
scores[t, :, k, a, m] = np.array(ss) | |
self.eval = { | |
"params": p, | |
"counts": [T, R, K, A, M], | |
"date": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"), | |
"precision": precision, | |
"recall": recall, | |
"scores": scores, | |
} | |
toc = time.time() | |
print("DONE (t={:0.2f}s).".format(toc - tic)) | |
def summarize(self): | |
""" | |
Compute and display summary metrics for evaluation results. | |
Note this functin can *only* be applied on the default parameter setting | |
""" | |
def _summarize(ap=1, iouThr=None, areaRng="all", maxDets=100): | |
p = self.params | |
iStr = " {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}" | |
titleStr = "Average Precision" if ap == 1 else "Average Recall" | |
typeStr = "(AP)" if ap == 1 else "(AR)" | |
iouStr = ( | |
"{:0.2f}:{:0.2f}".format(p.iouThrs[0], p.iouThrs[-1]) | |
if iouThr is None | |
else "{:0.2f}".format(iouThr) | |
) | |
aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng] | |
mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets] | |
if ap == 1: | |
# dimension of precision: [TxRxKxAxM] | |
s = self.eval["precision"] | |
# IoU | |
if iouThr is not None: | |
t = np.where(iouThr == p.iouThrs)[0] | |
s = s[t] | |
s = s[:, :, :, aind, mind] | |
else: | |
# dimension of recall: [TxKxAxM] | |
s = self.eval["recall"] | |
if iouThr is not None: | |
t = np.where(iouThr == p.iouThrs)[0] | |
s = s[t] | |
s = s[:, :, aind, mind] | |
if len(s[s > -1]) == 0: | |
mean_s = -1 | |
else: | |
mean_s = np.mean(s[s > -1]) | |
print(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s)) | |
return mean_s | |
def _summarizeDets(): | |
stats = np.zeros((12,)) | |
stats[0] = _summarize(1) | |
stats[1] = _summarize(1, iouThr=0.5, maxDets=self.params.maxDets[2]) | |
stats[2] = _summarize(1, iouThr=0.75, maxDets=self.params.maxDets[2]) | |
stats[3] = _summarize(1, areaRng="small", maxDets=self.params.maxDets[2]) | |
stats[4] = _summarize(1, areaRng="medium", maxDets=self.params.maxDets[2]) | |
stats[5] = _summarize(1, areaRng="large", maxDets=self.params.maxDets[2]) | |
stats[6] = _summarize(0, maxDets=self.params.maxDets[0]) | |
stats[7] = _summarize(0, maxDets=self.params.maxDets[1]) | |
stats[8] = _summarize(0, maxDets=self.params.maxDets[2]) | |
stats[9] = _summarize(0, areaRng="small", maxDets=self.params.maxDets[2]) | |
stats[10] = _summarize(0, areaRng="medium", maxDets=self.params.maxDets[2]) | |
stats[11] = _summarize(0, areaRng="large", maxDets=self.params.maxDets[2]) | |
return stats | |
def _summarizeKps(): | |
stats = np.zeros((10,)) | |
stats[0] = _summarize(1, maxDets=20) | |
stats[1] = _summarize(1, maxDets=20, iouThr=0.5) | |
stats[2] = _summarize(1, maxDets=20, iouThr=0.75) | |
stats[3] = _summarize(1, maxDets=20, areaRng="medium") | |
stats[4] = _summarize(1, maxDets=20, areaRng="large") | |
stats[5] = _summarize(0, maxDets=20) | |
stats[6] = _summarize(0, maxDets=20, iouThr=0.5) | |
stats[7] = _summarize(0, maxDets=20, iouThr=0.75) | |
stats[8] = _summarize(0, maxDets=20, areaRng="medium") | |
stats[9] = _summarize(0, maxDets=20, areaRng="large") | |
return stats | |
if not self.eval: | |
raise Exception("Please run accumulate() first") | |
iouType = self.params.iouType | |
if iouType == "segm" or iouType == "bbox": | |
summarize = _summarizeDets | |
elif iouType == "keypoints": | |
summarize = _summarizeKps | |
self.stats = summarize() | |
def __str__(self): | |
self.summarize() | |
class Params: | |
""" | |
Params for coco evaluation api | |
""" | |
def setDetParams(self): | |
self.imgIds = [] | |
self.catIds = [] | |
# np.arange causes trouble. the data point on arange is slightly larger than the true value | |
self.iouThrs = np.linspace( | |
0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True | |
) | |
self.recThrs = np.linspace( | |
0.0, 1.00, int(np.round((1.00 - 0.0) / 0.01)) + 1, endpoint=True | |
) | |
self.maxDets = [1, 10, 100] | |
self.areaRng = [ | |
[0**2, 1e5**2], | |
[0**2, 32**2], | |
[32**2, 96**2], | |
[96**2, 1e5**2], | |
] | |
self.areaRngLbl = ["all", "small", "medium", "large"] | |
self.useCats = 1 | |
def setKpParams(self): | |
self.imgIds = [] | |
self.catIds = [] | |
# np.arange causes trouble. the data point on arange is slightly larger than the true value | |
self.iouThrs = np.linspace( | |
0.5, 0.95, int(np.round((0.95 - 0.5) / 0.05)) + 1, endpoint=True | |
) | |
self.recThrs = np.linspace( | |
0.0, 1.00, int(np.round((1.00 - 0.0) / 0.01)) + 1, endpoint=True | |
) | |
self.maxDets = [20] | |
self.areaRng = [[0**2, 1e5**2], [32**2, 96**2], [96**2, 1e5**2]] | |
self.areaRngLbl = ["all", "medium", "large"] | |
self.useCats = 1 | |
self.kpt_oks_sigmas = ( | |
np.array( | |
[ | |
0.26, | |
0.25, | |
0.25, | |
0.35, | |
0.35, | |
0.79, | |
0.79, | |
0.72, | |
0.72, | |
0.62, | |
0.62, | |
1.07, | |
1.07, | |
0.87, | |
0.87, | |
0.89, | |
0.89, | |
] | |
) | |
/ 10.0 | |
) | |
def __init__(self, iouType="segm"): | |
if iouType == "bbox": | |
self.setDetParams() | |
else: | |
raise Exception("iouType not supported") | |
self.iouType = iouType | |
# useSegm is deprecated | |
self.useSegm = None | |