dominguesm's picture
Add fix to gradio version
11231a5
raw
history blame
9.48 kB
import json
import math
import os
import gradio as gr
import numpy as np
import pandas as pd
import plotly.express as px
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import RandomizedSearchCV
from sklearn.naive_bayes import ComplementNB
from sklearn.pipeline import Pipeline
os.system("pip uninstall -y gradio")
os.system("pip install gradio==3.26.0")
CATEGORIES = [
"alt.atheism",
"comp.graphics",
"comp.os.ms-windows.misc",
"comp.sys.ibm.pc.hardware",
"comp.sys.mac.hardware",
"comp.windows.x",
"misc.forsale",
"rec.autos",
"rec.motorcycles",
"rec.sport.baseball",
"rec.sport.hockey",
"sci.crypt",
"sci.electronics",
"sci.med",
"sci.space",
"soc.religion.christian",
"talk.politics.guns",
"talk.politics.mideast",
"talk.politics.misc",
"talk.religion.misc",
]
def shorten_param(param_name):
"""Remove components' prefixes in param_name."""
if "__" in param_name:
return param_name.rsplit("__", 1)[1]
return param_name
def train_model(categories, vect__max_df, vect__min_df, vect__ngram_range, vect__norm):
pipeline = Pipeline(
[
("vect", TfidfVectorizer()),
("clf", ComplementNB()),
]
)
parameters_grid = {
"vect__max_df": [eval(value) for value in vect__max_df.split(",")],
"vect__min_df": [eval(value) for value in vect__min_df.split(",")],
"vect__ngram_range": eval(vect__ngram_range), # unigrams or bigrams
"vect__norm": [value.strip() for value in vect__norm.split(",")],
"clf__alpha": np.logspace(-6, 6, 13),
}
print(parameters_grid)
data_train = fetch_20newsgroups(
subset="train",
categories=categories,
shuffle=True,
random_state=42,
remove=("headers", "footers", "quotes"),
)
data_test = fetch_20newsgroups(
subset="test",
categories=categories,
shuffle=True,
random_state=42,
remove=("headers", "footers", "quotes"),
)
pipeline = Pipeline(
[
("vect", TfidfVectorizer()),
("clf", ComplementNB()),
]
)
random_search = RandomizedSearchCV(
estimator=pipeline,
param_distributions=parameters_grid,
n_iter=40,
random_state=0,
n_jobs=2,
verbose=1,
)
random_search.fit(data_train.data, data_train.target)
best_parameters = json.dumps(
random_search.best_estimator_.get_params(),
indent=4,
sort_keys=True,
default=str,
)
test_accuracy = random_search.score(data_test.data, data_test.target)
cv_results = pd.DataFrame(random_search.cv_results_)
cv_results = cv_results.rename(shorten_param, axis=1)
param_names = [shorten_param(name) for name in parameters_grid.keys()]
labels = {
"mean_score_time": "CV Score time (s)",
"mean_test_score": "CV score (accuracy)",
}
fig = px.scatter(
cv_results,
x="mean_score_time",
y="mean_test_score",
error_x="std_score_time",
error_y="std_test_score",
hover_data=param_names,
labels=labels,
)
fig.update_layout(
title={
"text": "trade-off between scoring time and mean test score",
"y": 0.95,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
}
)
column_results = param_names + ["mean_test_score", "mean_score_time"]
transform_funcs = dict.fromkeys(column_results, lambda x: x)
# Using a logarithmic scale for alpha
transform_funcs["alpha"] = math.log10
# L1 norms are mapped to index 1, and L2 norms to index 2
transform_funcs["norm"] = lambda x: 2 if x == "l2" else 1
# Unigrams are mapped to index 1 and bigrams to index 2
transform_funcs["ngram_range"] = lambda x: x[1]
fig2 = px.parallel_coordinates(
cv_results[column_results].apply(transform_funcs),
color="mean_test_score",
color_continuous_scale=px.colors.sequential.Viridis_r,
labels=labels,
)
fig2.update_layout(
title={
"text": "Parallel coordinates plot of text classifier pipeline",
"y": 0.99,
"x": 0.5,
"xanchor": "center",
"yanchor": "top",
}
)
return fig, fig2, best_parameters, test_accuracy
def load_description(name):
with open(f"./descriptions/{name}.md", "r") as f:
return f.read()
AUTHOR = """
Created by [@dominguesm](https://huggingface.co/dominguesm) based on [scikit-learn docs](https://scikit-learn.org/stable/auto_examples/model_selection/plot_grid_search_text_feature_extraction.html)
"""
with gr.Blocks(theme=gr.themes.Soft()) as app:
with gr.Row():
with gr.Column():
gr.Markdown("# Sample pipeline for text feature extraction and evaluation")
gr.Markdown(load_description("description_part1"))
gr.Markdown(load_description("description_part2"))
gr.Markdown(AUTHOR)
with gr.Row():
with gr.Column():
gr.Markdown("""## CATEGORY SELECTION""")
gr.Markdown(load_description("description_category_selection"))
drop_categories = gr.Dropdown(
CATEGORIES,
value=["alt.atheism", "talk.religion.misc"],
multiselect=True,
label="Categories",
info="Please select up to two categories that you want to receive training on.",
max_choices=2,
interactive=True,
)
with gr.Row():
with gr.Tab("PARAMETERS GRID"):
gr.Markdown(load_description("description_parameter_grid"))
with gr.Row():
with gr.Column():
clf__alpha = gr.Textbox(
label="Classifier Alpha (clf__alpha)",
value="1.e-06, 1.e-05, 1.e-04",
info="Due to practical considerations, this parameter was kept constant.",
interactive=False,
)
vect__max_df = gr.Textbox(
label="Vectorizer max_df (vect__max_df)",
value="0.2, 0.4, 0.6, 0.8, 1.0",
info="Values ranging from 0 to 1.0, separated by a comma.",
interactive=True,
)
vect__min_df = gr.Textbox(
label="Vectorizer min_df (vect__min_df)",
value="1, 3, 5, 10",
info="Values ranging from 0 to 1.0, separated by a comma, or integers separated by a comma. If float, the parameter represents a proportion of documents, integer absolute counts.",
interactive=True,
)
with gr.Column():
vect__ngram_range = gr.Textbox(
label="Vectorizer ngram_range (vect__ngram_range)",
value="(1, 1), (1, 2)",
info="""Tuples of integer values separated by a comma. For example an `ngram_range` of `(1, 1)` means only unigrams, `(1, 2)` means unigrams and bigrams, and `(2, 2)` means only bigrams.""",
interactive=True,
)
vect__norm = gr.Textbox(
label="Vectorizer norm (vect__norm)",
value="l1, l2",
info="'l1' or 'l2', separated by a comma",
interactive=True,
)
with gr.Tab("DESCRIPTION OF PARAMETERS"):
gr.Markdown("""### Classifier Alpha""")
gr.Markdown(load_description("parameter_grid/alpha"))
gr.Markdown("""### Vectorizer max_df""")
gr.Markdown(load_description("parameter_grid/max_df"))
gr.Markdown("""### Vectorizer min_df""")
gr.Markdown(load_description("parameter_grid/min_df"))
gr.Markdown("""### Vectorizer ngram_range""")
gr.Markdown(load_description("parameter_grid/ngram_range"))
gr.Markdown("""### Vectorizer norm""")
gr.Markdown(load_description("parameter_grid/norm"))
with gr.Row():
gr.Markdown(
"""
## MODEL PIPELINE
```python
pipeline = Pipeline(
[
("vect", TfidfVectorizer()),
("clf", ComplementNB()),
]
)
```
"""
)
with gr.Row():
with gr.Column():
gr.Markdown("""## TRAINING""")
with gr.Row():
brn_train = gr.Button("Train").style(container=False)
gr.Markdown("## RESULTS")
with gr.Row():
best_parameters = gr.Textbox(label="Best parameters")
test_accuracy = gr.Textbox(label="Test accuracy")
plot_trade = gr.Plot(label="")
plot_coordinates = gr.Plot(label="")
brn_train.click(
train_model,
inputs=[
drop_categories,
vect__max_df,
vect__min_df,
vect__ngram_range,
vect__norm,
],
outputs=[plot_trade, plot_coordinates, best_parameters, test_accuracy],
)
app.launch()