Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Add application file
Browse files
app.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from sklearn.datasets import load_iris
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
|
5 |
+
from sklearn import svm, linear_model
|
6 |
+
from sklearn.metrics import auc
|
7 |
+
from sklearn.metrics import RocCurveDisplay
|
8 |
+
from sklearn.model_selection import StratifiedKFold
|
9 |
+
import gradio as gr
|
10 |
+
|
11 |
+
from functools import partial
|
12 |
+
|
13 |
+
|
14 |
+
# Wrap the [Initial Analysis](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html)
|
15 |
+
|
16 |
+
def auc_analysis(selected_data, n_folds, cls_name):
|
17 |
+
default_base = {"n_folds": 5}
|
18 |
+
|
19 |
+
# Load and prepare iris data
|
20 |
+
iris = load_iris()
|
21 |
+
X_iris, y_iris, target_names_iris = iris.data, iris.target, iris.target_names
|
22 |
+
X_iris, y_iris, target_names_iris = X_iris[y_iris != 2], y_iris[y_iris != 2], target_names_iris[0:-1]
|
23 |
+
n_samples_iris, n_features_iris = X_iris.shape
|
24 |
+
# Add noisy features to make the problem harder
|
25 |
+
random_state = np.random.RandomState(0)
|
26 |
+
X_iris = np.concatenate([X_iris, random_state.randn(n_samples_iris, 200 * n_features_iris)], axis=1)
|
27 |
+
|
28 |
+
dataset_list = {
|
29 |
+
"Iris": [X_iris, y_iris, target_names_iris]
|
30 |
+
}
|
31 |
+
|
32 |
+
# Load selected data
|
33 |
+
params = default_base.copy()
|
34 |
+
params.update({"n_folds": n_folds})
|
35 |
+
X, y, target_names = dataset_list[selected_data]
|
36 |
+
|
37 |
+
# Define classification model
|
38 |
+
svc_linear = svm.SVC(kernel="linear", probability=True, random_state=random_state)
|
39 |
+
logistic_regression = linear_model.LogisticRegression()
|
40 |
+
|
41 |
+
classification_models = {
|
42 |
+
"SVC - linear kernel": svc_linear,
|
43 |
+
"Logistic Regression": logistic_regression
|
44 |
+
}
|
45 |
+
|
46 |
+
classifier = classification_models[cls_name]
|
47 |
+
|
48 |
+
# Define folds
|
49 |
+
cv = StratifiedKFold(n_splits=params["n_folds"])
|
50 |
+
|
51 |
+
# ROC analysis
|
52 |
+
tprs = []
|
53 |
+
aucs = []
|
54 |
+
mean_fpr = np.linspace(0, 1, 100)
|
55 |
+
|
56 |
+
fig, ax = plt.subplots(figsize=(6, 6))
|
57 |
+
for fold, (train, test) in enumerate(cv.split(X, y)):
|
58 |
+
classifier.fit(X[train], y[train])
|
59 |
+
viz = RocCurveDisplay.from_estimator(
|
60 |
+
classifier,
|
61 |
+
X[test],
|
62 |
+
y[test],
|
63 |
+
name=f"ROC fold {fold}",
|
64 |
+
alpha=0.5,
|
65 |
+
lw=1,
|
66 |
+
ax=ax,
|
67 |
+
)
|
68 |
+
interp_tpr = np.interp(mean_fpr, viz.fpr, viz.tpr)
|
69 |
+
interp_tpr[0] = 0.0
|
70 |
+
tprs.append(interp_tpr)
|
71 |
+
aucs.append(viz.roc_auc)
|
72 |
+
ax.plot([0, 1], [0, 1], "k--", label="chance level (AUC = 0.5)")
|
73 |
+
|
74 |
+
mean_tpr = np.mean(tprs, axis=0)
|
75 |
+
mean_tpr[-1] = 1.0
|
76 |
+
mean_auc = auc(mean_fpr, mean_tpr)
|
77 |
+
std_auc = np.std(aucs)
|
78 |
+
ax.plot(
|
79 |
+
mean_fpr,
|
80 |
+
mean_tpr,
|
81 |
+
color="b",
|
82 |
+
label=r"Mean ROC (AUC = %0.2f $\pm$ %0.2f)" % (mean_auc, std_auc),
|
83 |
+
lw=2,
|
84 |
+
alpha=0.8,
|
85 |
+
)
|
86 |
+
|
87 |
+
std_tpr = np.std(tprs, axis=0)
|
88 |
+
tprs_upper = np.minimum(mean_tpr + std_tpr, 1)
|
89 |
+
tprs_lower = np.maximum(mean_tpr - std_tpr, 0)
|
90 |
+
ax.fill_between(
|
91 |
+
mean_fpr,
|
92 |
+
tprs_lower,
|
93 |
+
tprs_upper,
|
94 |
+
color="grey",
|
95 |
+
alpha=0.2,
|
96 |
+
label=r"$\pm$ 1 std. dev.",
|
97 |
+
)
|
98 |
+
|
99 |
+
ax.set(
|
100 |
+
xlim=[-0.05, 1.05],
|
101 |
+
ylim=[-0.05, 1.05],
|
102 |
+
xlabel="False Positive Rate",
|
103 |
+
ylabel="True Positive Rate",
|
104 |
+
title=f"Mean ROC curve with variability\n(Positive label '{target_names[1]}')",
|
105 |
+
)
|
106 |
+
ax.axis("square")
|
107 |
+
ax.legend(loc="lower right")
|
108 |
+
|
109 |
+
return fig
|
110 |
+
|
111 |
+
|
112 |
+
# Build the Demo
|
113 |
+
|
114 |
+
def iter_grid(n_rows, n_cols):
|
115 |
+
# create a grid using gradio Block
|
116 |
+
for _ in range(n_rows):
|
117 |
+
with gr.Row():
|
118 |
+
for _ in range(n_cols):
|
119 |
+
with gr.Column():
|
120 |
+
yield
|
121 |
+
|
122 |
+
|
123 |
+
input_models = ["SVC - linear kernel", "Logistic Regression"]
|
124 |
+
|
125 |
+
title = "🔬 Receiver Operating Characteristic (ROC) with cross validation"
|
126 |
+
with gr.Blocks(title=title) as demo:
|
127 |
+
gr.Markdown(f"## {title}")
|
128 |
+
gr.Markdown(
|
129 |
+
"This app demonstrates Receiver Operating Characteristic (ROC) metric estimate variability using "
|
130 |
+
"cross-validation. It shows the response of ROC and of its variance to different datasets, created from "
|
131 |
+
"K-fold cross-validation. "
|
132 |
+
"See the [source](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html)"
|
133 |
+
" for more details.")
|
134 |
+
gr.Markdown(f'Available classification models: {", ".join(input_models)}.')
|
135 |
+
|
136 |
+
with gr.Row():
|
137 |
+
with gr.Column():
|
138 |
+
input_data = gr.Radio(
|
139 |
+
choices=["Iris"],
|
140 |
+
value="Iris",
|
141 |
+
label="Dataset",
|
142 |
+
info="Available datasets"
|
143 |
+
)
|
144 |
+
with gr.Column():
|
145 |
+
n_folds = gr.Radio(
|
146 |
+
[3, 4, 5, 6, 7, 8, 9], value=4, label="Folds", info="Number of cross-validation splits"
|
147 |
+
)
|
148 |
+
|
149 |
+
counter = 0
|
150 |
+
for _ in iter_grid(len(input_models) // 2 + len(input_models) % 2, 2):
|
151 |
+
if counter >= len(input_models):
|
152 |
+
break
|
153 |
+
input_model = input_models[counter]
|
154 |
+
plot = gr.Plot(label=input_model)
|
155 |
+
fn = partial(auc_analysis, cls_name=input_model)
|
156 |
+
input_data.change(fn=fn, inputs=[input_data, n_folds], outputs=plot)
|
157 |
+
n_folds.change(fn=fn, inputs=[input_data, n_folds], outputs=plot)
|
158 |
+
counter += 1
|
159 |
+
|
160 |
+
if __name__ == "__main__":
|
161 |
+
demo.launch()
|