Zhenev commited on
Commit
4701648
1 Parent(s): 13e85c3

Add application file

Browse files
Files changed (1) hide show
  1. app.py +161 -0
app.py ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from sklearn.datasets import load_iris
3
+ import matplotlib.pyplot as plt
4
+
5
+ from sklearn import svm, linear_model
6
+ from sklearn.metrics import auc
7
+ from sklearn.metrics import RocCurveDisplay
8
+ from sklearn.model_selection import StratifiedKFold
9
+ import gradio as gr
10
+
11
+ from functools import partial
12
+
13
+
14
+ # Wrap the [Initial Analysis](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html)
15
+
16
+ def auc_analysis(selected_data, n_folds, cls_name):
17
+ default_base = {"n_folds": 5}
18
+
19
+ # Load and prepare iris data
20
+ iris = load_iris()
21
+ X_iris, y_iris, target_names_iris = iris.data, iris.target, iris.target_names
22
+ X_iris, y_iris, target_names_iris = X_iris[y_iris != 2], y_iris[y_iris != 2], target_names_iris[0:-1]
23
+ n_samples_iris, n_features_iris = X_iris.shape
24
+ # Add noisy features to make the problem harder
25
+ random_state = np.random.RandomState(0)
26
+ X_iris = np.concatenate([X_iris, random_state.randn(n_samples_iris, 200 * n_features_iris)], axis=1)
27
+
28
+ dataset_list = {
29
+ "Iris": [X_iris, y_iris, target_names_iris]
30
+ }
31
+
32
+ # Load selected data
33
+ params = default_base.copy()
34
+ params.update({"n_folds": n_folds})
35
+ X, y, target_names = dataset_list[selected_data]
36
+
37
+ # Define classification model
38
+ svc_linear = svm.SVC(kernel="linear", probability=True, random_state=random_state)
39
+ logistic_regression = linear_model.LogisticRegression()
40
+
41
+ classification_models = {
42
+ "SVC - linear kernel": svc_linear,
43
+ "Logistic Regression": logistic_regression
44
+ }
45
+
46
+ classifier = classification_models[cls_name]
47
+
48
+ # Define folds
49
+ cv = StratifiedKFold(n_splits=params["n_folds"])
50
+
51
+ # ROC analysis
52
+ tprs = []
53
+ aucs = []
54
+ mean_fpr = np.linspace(0, 1, 100)
55
+
56
+ fig, ax = plt.subplots(figsize=(6, 6))
57
+ for fold, (train, test) in enumerate(cv.split(X, y)):
58
+ classifier.fit(X[train], y[train])
59
+ viz = RocCurveDisplay.from_estimator(
60
+ classifier,
61
+ X[test],
62
+ y[test],
63
+ name=f"ROC fold {fold}",
64
+ alpha=0.5,
65
+ lw=1,
66
+ ax=ax,
67
+ )
68
+ interp_tpr = np.interp(mean_fpr, viz.fpr, viz.tpr)
69
+ interp_tpr[0] = 0.0
70
+ tprs.append(interp_tpr)
71
+ aucs.append(viz.roc_auc)
72
+ ax.plot([0, 1], [0, 1], "k--", label="chance level (AUC = 0.5)")
73
+
74
+ mean_tpr = np.mean(tprs, axis=0)
75
+ mean_tpr[-1] = 1.0
76
+ mean_auc = auc(mean_fpr, mean_tpr)
77
+ std_auc = np.std(aucs)
78
+ ax.plot(
79
+ mean_fpr,
80
+ mean_tpr,
81
+ color="b",
82
+ label=r"Mean ROC (AUC = %0.2f $\pm$ %0.2f)" % (mean_auc, std_auc),
83
+ lw=2,
84
+ alpha=0.8,
85
+ )
86
+
87
+ std_tpr = np.std(tprs, axis=0)
88
+ tprs_upper = np.minimum(mean_tpr + std_tpr, 1)
89
+ tprs_lower = np.maximum(mean_tpr - std_tpr, 0)
90
+ ax.fill_between(
91
+ mean_fpr,
92
+ tprs_lower,
93
+ tprs_upper,
94
+ color="grey",
95
+ alpha=0.2,
96
+ label=r"$\pm$ 1 std. dev.",
97
+ )
98
+
99
+ ax.set(
100
+ xlim=[-0.05, 1.05],
101
+ ylim=[-0.05, 1.05],
102
+ xlabel="False Positive Rate",
103
+ ylabel="True Positive Rate",
104
+ title=f"Mean ROC curve with variability\n(Positive label '{target_names[1]}')",
105
+ )
106
+ ax.axis("square")
107
+ ax.legend(loc="lower right")
108
+
109
+ return fig
110
+
111
+
112
+ # Build the Demo
113
+
114
+ def iter_grid(n_rows, n_cols):
115
+ # create a grid using gradio Block
116
+ for _ in range(n_rows):
117
+ with gr.Row():
118
+ for _ in range(n_cols):
119
+ with gr.Column():
120
+ yield
121
+
122
+
123
+ input_models = ["SVC - linear kernel", "Logistic Regression"]
124
+
125
+ title = "🔬 Receiver Operating Characteristic (ROC) with cross validation"
126
+ with gr.Blocks(title=title) as demo:
127
+ gr.Markdown(f"## {title}")
128
+ gr.Markdown(
129
+ "This app demonstrates Receiver Operating Characteristic (ROC) metric estimate variability using "
130
+ "cross-validation. It shows the response of ROC and of its variance to different datasets, created from "
131
+ "K-fold cross-validation. "
132
+ "See the [source](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html)"
133
+ " for more details.")
134
+ gr.Markdown(f'Available classification models: {", ".join(input_models)}.')
135
+
136
+ with gr.Row():
137
+ with gr.Column():
138
+ input_data = gr.Radio(
139
+ choices=["Iris"],
140
+ value="Iris",
141
+ label="Dataset",
142
+ info="Available datasets"
143
+ )
144
+ with gr.Column():
145
+ n_folds = gr.Radio(
146
+ [3, 4, 5, 6, 7, 8, 9], value=4, label="Folds", info="Number of cross-validation splits"
147
+ )
148
+
149
+ counter = 0
150
+ for _ in iter_grid(len(input_models) // 2 + len(input_models) % 2, 2):
151
+ if counter >= len(input_models):
152
+ break
153
+ input_model = input_models[counter]
154
+ plot = gr.Plot(label=input_model)
155
+ fn = partial(auc_analysis, cls_name=input_model)
156
+ input_data.change(fn=fn, inputs=[input_data, n_folds], outputs=plot)
157
+ n_folds.change(fn=fn, inputs=[input_data, n_folds], outputs=plot)
158
+ counter += 1
159
+
160
+ if __name__ == "__main__":
161
+ demo.launch()