Zhenev's picture
Fixing the title in app.py
de9601f
import numpy as np
from sklearn import datasets
import matplotlib.pyplot as plt
from sklearn import svm, linear_model
from sklearn.metrics import auc
from sklearn.metrics import RocCurveDisplay
from sklearn.model_selection import StratifiedKFold
import gradio as gr
from functools import partial
# Wrap the [Initial Analysis](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html)
def auc_analysis(selected_data, n_folds, cls_name):
default_base = {"n_folds": 5}
# Load and prepare iris data
iris = datasets.load_iris()
X_iris, y_iris, target_names_iris = iris.data, iris.target, iris.target_names
X_iris, y_iris, target_names_iris = X_iris[y_iris != 2], y_iris[y_iris != 2], target_names_iris[0:-1]
n_samples_iris, n_features_iris = X_iris.shape
# Add noisy features to make the problem harder
random_state = np.random.RandomState(0)
X_iris = np.concatenate([X_iris, random_state.randn(n_samples_iris, 200 * n_features_iris)], axis=1)
dataset_list = {
"Iris": [X_iris, y_iris, target_names_iris]
}
# Load selected data
params = default_base.copy()
params.update({"n_folds": n_folds})
X, y, target_names = dataset_list[selected_data]
# Define classification model
svc_linear = svm.SVC(kernel="linear", probability=True, random_state=random_state)
logistic_regression = linear_model.LogisticRegression()
classification_models = {
"SVC - linear kernel": svc_linear,
"Logistic Regression": logistic_regression
}
classifier = classification_models[cls_name]
# Define folds
cv = StratifiedKFold(n_splits=params["n_folds"])
# ROC analysis
tprs = []
aucs = []
mean_fpr = np.linspace(0, 1, 100)
fig, ax = plt.subplots(figsize=(6, 6))
for fold, (train, test) in enumerate(cv.split(X, y)):
classifier.fit(X[train], y[train])
viz = RocCurveDisplay.from_estimator(
classifier,
X[test],
y[test],
name=f"ROC fold {fold}",
alpha=0.5,
lw=1,
ax=ax,
)
interp_tpr = np.interp(mean_fpr, viz.fpr, viz.tpr)
interp_tpr[0] = 0.0
tprs.append(interp_tpr)
aucs.append(viz.roc_auc)
ax.plot([0, 1], [0, 1], "k--", label="chance level (AUC = 0.5)")
mean_tpr = np.mean(tprs, axis=0)
mean_tpr[-1] = 1.0
mean_auc = auc(mean_fpr, mean_tpr)
std_auc = np.std(aucs)
ax.plot(
mean_fpr,
mean_tpr,
color="b",
label=r"Mean ROC (AUC = %0.2f $\pm$ %0.2f)" % (mean_auc, std_auc),
lw=2,
alpha=0.8,
)
std_tpr = np.std(tprs, axis=0)
tprs_upper = np.minimum(mean_tpr + std_tpr, 1)
tprs_lower = np.maximum(mean_tpr - std_tpr, 0)
ax.fill_between(
mean_fpr,
tprs_lower,
tprs_upper,
color="grey",
alpha=0.2,
label=r"$\pm$ 1 std. dev.",
)
ax.set(
xlim=[-0.05, 1.05],
ylim=[-0.05, 1.05],
xlabel="False Positive Rate",
ylabel="True Positive Rate",
title=f"Mean ROC curve with variability\n(Positive label '{target_names[1]}')",
)
ax.axis("square")
ax.legend(loc="lower right")
return fig
# Build the Demo
def iter_grid(n_rows, n_cols):
# create a grid using gradio Block
for _ in range(n_rows):
with gr.Row():
for _ in range(n_cols):
with gr.Column():
yield
input_models = ["SVC - linear kernel", "Logistic Regression"]
title = "πŸ”¬ Receiver Operating Characteristic (ROC) with Cross Validation"
with gr.Blocks(title=title) as demo:
gr.Markdown(f"## {title}")
gr.Markdown(
"This app demonstrates Receiver Operating Characteristic (ROC) metric estimate variability using "
"cross-validation. It shows the response of ROC and of its variance to different datasets, created from "
"K-fold cross-validation. "
"See the [source](https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc_crossval.html)"
" for more details.")
gr.Markdown(f'Available classification models: {", ".join(input_models)}.')
with gr.Row():
with gr.Column():
input_data = gr.Radio(
choices=["Iris"],
value="Iris",
label="Dataset",
info="Available datasets"
)
with gr.Column():
n_folds = gr.Radio(
[3, 4, 5, 6, 7, 8, 9], value=4, label="Folds", info="Number of cross-validation splits"
)
counter = 0
for _ in iter_grid(len(input_models) // 2 + len(input_models) % 2, 2):
if counter >= len(input_models):
break
input_model = input_models[counter]
plot = gr.Plot(label=input_model)
fn = partial(auc_analysis, cls_name=input_model)
input_data.change(fn=fn, inputs=[input_data, n_folds], outputs=plot)
n_folds.change(fn=fn, inputs=[input_data, n_folds], outputs=plot)
counter += 1
if __name__ == "__main__":
demo.launch()