vumichien commited on
Commit
b408b0c
Β·
1 Parent(s): 7a098c3

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +12 -2
app.py CHANGED
@@ -10,6 +10,17 @@ theme = gr.themes.Monochrome(
10
  secondary_hue="blue",
11
  neutral_hue="slate",
12
  )
 
 
 
 
 
 
 
 
 
 
 
13
 
14
  X, y = load_breast_cancer(return_X_y=True)
15
 
@@ -77,8 +88,7 @@ with gr.Blocks(theme=theme) as demo:
77
  <h1 style='text-align: center'>βš’ Post pruning decision trees with cost complexity pruning πŸ› </h1>
78
  </div>
79
  ''')
80
- gr.Markdown("The DecisionTreeClassifier employs a pruning technique that can be configured using the cost complexity parameter, commonly referred to as ccp_alpha."
81
- " By increasing the value of ccp_alpha, a greater number of nodes can be pruned. This demo demonstrates the impact of ccp_alpha on tree regularization\n Dataset: Breast Cancer")
82
  gr.Markdown("Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the example from <a href=\"https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html#sphx-glr-auto-examples-tree-plot-cost-complexity-pruning-py\">scikit-learn</a>")
83
  test_size = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Test size")
84
  random_state = gr.Slider(minimum=0, maximum=2000, step=1, value=0, label="Random state")
 
10
  secondary_hue="blue",
11
  neutral_hue="slate",
12
  )
13
+ model_card = f"""
14
+ ## Description
15
+
16
+ The **DecisionTreeClassifier** employs a pruning technique that can be configured using the cost complexity parameter, commonly referred to as **ccp_alpha**.
17
+ By increasing the value of ccp_alpha, a greater number of nodes can be pruned. This demo demonstrates the impact of ccp_alpha on tree regularization
18
+
19
+ ## Dataset
20
+
21
+ Breast Cancer
22
+
23
+ """
24
 
25
  X, y = load_breast_cancer(return_X_y=True)
26
 
 
88
  <h1 style='text-align: center'>βš’ Post pruning decision trees with cost complexity pruning πŸ› </h1>
89
  </div>
90
  ''')
91
+ gr.Markdown(model_card)
 
92
  gr.Markdown("Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the example from <a href=\"https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html#sphx-glr-auto-examples-tree-plot-cost-complexity-pruning-py\">scikit-learn</a>")
93
  test_size = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Test size")
94
  random_state = gr.Slider(minimum=0, maximum=2000, step=1, value=0, label="Random state")