Update app.py
Browse files
app.py
CHANGED
@@ -10,6 +10,17 @@ theme = gr.themes.Monochrome(
|
|
10 |
secondary_hue="blue",
|
11 |
neutral_hue="slate",
|
12 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
X, y = load_breast_cancer(return_X_y=True)
|
15 |
|
@@ -77,8 +88,7 @@ with gr.Blocks(theme=theme) as demo:
|
|
77 |
<h1 style='text-align: center'>β Post pruning decision trees with cost complexity pruning π </h1>
|
78 |
</div>
|
79 |
''')
|
80 |
-
gr.Markdown(
|
81 |
-
" By increasing the value of ccp_alpha, a greater number of nodes can be pruned. This demo demonstrates the impact of ccp_alpha on tree regularization\n Dataset: Breast Cancer")
|
82 |
gr.Markdown("Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the example from <a href=\"https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html#sphx-glr-auto-examples-tree-plot-cost-complexity-pruning-py\">scikit-learn</a>")
|
83 |
test_size = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Test size")
|
84 |
random_state = gr.Slider(minimum=0, maximum=2000, step=1, value=0, label="Random state")
|
|
|
10 |
secondary_hue="blue",
|
11 |
neutral_hue="slate",
|
12 |
)
|
13 |
+
model_card = f"""
|
14 |
+
## Description
|
15 |
+
|
16 |
+
The **DecisionTreeClassifier** employs a pruning technique that can be configured using the cost complexity parameter, commonly referred to as **ccp_alpha**.
|
17 |
+
By increasing the value of ccp_alpha, a greater number of nodes can be pruned. This demo demonstrates the impact of ccp_alpha on tree regularization
|
18 |
+
|
19 |
+
## Dataset
|
20 |
+
|
21 |
+
Breast Cancer
|
22 |
+
|
23 |
+
"""
|
24 |
|
25 |
X, y = load_breast_cancer(return_X_y=True)
|
26 |
|
|
|
88 |
<h1 style='text-align: center'>β Post pruning decision trees with cost complexity pruning π </h1>
|
89 |
</div>
|
90 |
''')
|
91 |
+
gr.Markdown(model_card)
|
|
|
92 |
gr.Markdown("Author: <a href=\"https://huggingface.co/vumichien\">Vu Minh Chien</a>. Based on the example from <a href=\"https://scikit-learn.org/stable/auto_examples/tree/plot_cost_complexity_pruning.html#sphx-glr-auto-examples-tree-plot-cost-complexity-pruning-py\">scikit-learn</a>")
|
93 |
test_size = gr.Slider(minimum=0, maximum=1, step=0.1, value=0.2, label="Test size")
|
94 |
random_state = gr.Slider(minimum=0, maximum=2000, step=1, value=0, label="Random state")
|