Spaces:
Runtime error
Runtime error
Jayabalambika
commited on
Commit
•
5fa63b7
1
Parent(s):
66539e8
first commit
Browse files
app.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from sklearn.decomposition import PCA
|
6 |
+
|
7 |
+
from sklearn.model_selection import train_test_split
|
8 |
+
from sklearn.pipeline import make_pipeline
|
9 |
+
from sklearn.linear_model import LinearRegression
|
10 |
+
from sklearn.preprocessing import StandardScaler
|
11 |
+
from sklearn.decomposition import PCA
|
12 |
+
from sklearn.cross_decomposition import PLSRegression
|
13 |
+
|
14 |
+
|
15 |
+
#Data preparation
|
16 |
+
def make_data():
|
17 |
+
rng = np.random.RandomState(0)
|
18 |
+
n_samples = 500
|
19 |
+
cov = [[3, 3], [3, 4]]
|
20 |
+
X = rng.multivariate_normal(mean=[0, 0], cov=cov, size=n_samples)
|
21 |
+
return X,rng,n_samples
|
22 |
+
|
23 |
+
|
24 |
+
def plot_scatter_pca(alpha):
|
25 |
+
|
26 |
+
|
27 |
+
plt.scatter(X[:, 0], X[:, 1], alpha=alpha, label="samples")
|
28 |
+
for i, (comp, var) in enumerate(zip(pca.components_, pca.explained_variance_)):
|
29 |
+
comp = comp * var # scale component by its variance explanation power
|
30 |
+
plt.plot(
|
31 |
+
[0, comp[0]],
|
32 |
+
[0, comp[1]],
|
33 |
+
label=f"Component {i}",
|
34 |
+
linewidth=5,
|
35 |
+
color=f"C{i + 2}",
|
36 |
+
)
|
37 |
+
plt.gca().set(
|
38 |
+
aspect="equal",
|
39 |
+
title="2-dimensional dataset with principal components",
|
40 |
+
xlabel="first feature",
|
41 |
+
ylabel="second feature",
|
42 |
+
)
|
43 |
+
plt.legend()
|
44 |
+
# plt.show()
|
45 |
+
return plt
|
46 |
+
|
47 |
+
def datagen_y():
|
48 |
+
y = X.dot(pca.components_[1]) + rng.normal(size=n_samples) / 2
|
49 |
+
return y
|
50 |
+
|
51 |
+
def data_projections():
|
52 |
+
y = datagen_y()
|
53 |
+
|
54 |
+
fig, axes = plt.subplots(1, 2, figsize=(10, 3))
|
55 |
+
|
56 |
+
axes[0].scatter(X.dot(pca.components_[0]), y, alpha=0.3)
|
57 |
+
axes[0].set(xlabel="Projected data onto first PCA component", ylabel="y")
|
58 |
+
axes[1].scatter(X.dot(pca.components_[1]), y, alpha=0.3)
|
59 |
+
axes[1].set(xlabel="Projected data onto second PCA component", ylabel="y")
|
60 |
+
plt.tight_layout()
|
61 |
+
# plt.show()
|
62 |
+
return plt
|
63 |
+
|
64 |
+
def plot_pca_ls():
|
65 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng)
|
66 |
+
|
67 |
+
pcr = make_pipeline(StandardScaler(), PCA(n_components=1), LinearRegression())
|
68 |
+
pcr.fit(X_train, y_train)
|
69 |
+
pca = pcr.named_steps["pca"] # retrieve the PCA step of the pipeline
|
70 |
+
|
71 |
+
pls = PLSRegression(n_components=1)
|
72 |
+
pls.fit(X_train, y_train)
|
73 |
+
|
74 |
+
fig, axes = plt.subplots(1, 2, figsize=(10, 3))
|
75 |
+
axes[0].scatter(pca.transform(X_test), y_test, alpha=0.3, label="ground truth")
|
76 |
+
axes[0].scatter(
|
77 |
+
pca.transform(X_test), pcr.predict(X_test), alpha=0.3, label="predictions"
|
78 |
+
)
|
79 |
+
axes[0].set(
|
80 |
+
xlabel="Projected data onto first PCA component", ylabel="y", title="PCR / PCA"
|
81 |
+
)
|
82 |
+
axes[0].legend()
|
83 |
+
axes[1].scatter(pls.transform(X_test), y_test, alpha=0.3, label="ground truth")
|
84 |
+
axes[1].scatter(
|
85 |
+
pls.transform(X_test), pls.predict(X_test), alpha=0.3, label="predictions"
|
86 |
+
)
|
87 |
+
axes[1].set(xlabel="Projected data onto first PLS component", ylabel="y", title="PLS")
|
88 |
+
axes[1].legend()
|
89 |
+
plt.tight_layout()
|
90 |
+
# plt.show()
|
91 |
+
return plt
|
92 |
+
|
93 |
+
|
94 |
+
def get_components():
|
95 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng)
|
96 |
+
pcr = make_pipeline(StandardScaler(), PCA(n_components=1), LinearRegression())
|
97 |
+
pls = PLSRegression(n_components=1)
|
98 |
+
return X_train, X_test, y_train, y_test, pcr, pls
|
99 |
+
|
100 |
+
|
101 |
+
def print_results():
|
102 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=rng)
|
103 |
+
|
104 |
+
pcr = make_pipeline(StandardScaler(), PCA(n_components=1), LinearRegression())
|
105 |
+
pcr.fit(X_train, y_train)
|
106 |
+
pca = pcr.named_steps["pca"] # retrieve the PCA step of the pipeline
|
107 |
+
|
108 |
+
pls = PLSRegression(n_components=1)
|
109 |
+
pls.fit(X_train, y_train)
|
110 |
+
result1 = f"PCR r-squared {pcr.score(X_test, y_test):.3f}"
|
111 |
+
result2 = f"PLS r-squared {pls.score(X_test, y_test):.3f}"
|
112 |
+
mystr = result1 +"\n"+ result2
|
113 |
+
|
114 |
+
return mystr
|
115 |
+
|
116 |
+
|
117 |
+
def calc_pcr_r2():
|
118 |
+
X_train, X_test, y_train, y_test, pcr, pls = get_components()
|
119 |
+
pca_2 = make_pipeline(PCA(n_components=2), LinearRegression())
|
120 |
+
pca_2.fit(X_train, y_train)
|
121 |
+
r2 = f"PCR r-squared with 2 components {pca_2.score(X_test, y_test):.3f}"
|
122 |
+
|
123 |
+
return r2
|
124 |
+
|
125 |
+
|
126 |
+
X, rng, n_samples = make_data()
|
127 |
+
pca = PCA(n_components=2).fit(X)
|
128 |
+
y = datagen_y()
|
129 |
+
# plot_scatter_pca(alpha)
|
130 |
+
|
131 |
+
|
132 |
+
title = " Principal Component Regression vs Partial Least Squares Regression."
|
133 |
+
|
134 |
+
|
135 |
+
with gr.Blocks(title=title, theme='gstaff/xkcd') as demo:
|
136 |
+
|
137 |
+
gr.Markdown(f" # {title}")
|
138 |
+
gr.Markdown(
|
139 |
+
"""
|
140 |
+
This example compares Principal Component Regression (PCR) and Partial Least Squares Regression (PLS) on a toy dataset.
|
141 |
+
|
142 |
+
Our goal is to illustrate how PLS can outperform PCR when the target is strongly correlated with some directions in the
|
143 |
+
data that have a low variance.
|
144 |
+
|
145 |
+
PCR is a regressor composed of two steps: first, PCA is applied to the training data, possibly performing dimensionality reduction;
|
146 |
+
then, a regressor (e.g. a linear regressor) is trained on the transformed samples.
|
147 |
+
|
148 |
+
In PCA, the transformation is purely unsupervised, meaning that no information about the targets is used.
|
149 |
+
As a result, PCR may perform poorly in some datasets where the target is strongly correlated with directions that have low variance.
|
150 |
+
|
151 |
+
Indeed, the dimensionality reduction of PCA projects the data into a lower dimensional space where the variance of the projected data
|
152 |
+
is greedily maximized along each axis. Despite them having the most predictive power on the target,
|
153 |
+
the directions with a lower variance will be dropped, and the final regressor will not be able to leverage them.
|
154 |
+
|
155 |
+
PLS is both a transformer and a regressor, and it is quite similar to PCR:
|
156 |
+
it also applies a dimensionality reduction to the samples before applying a linear regressor to the transformed data.
|
157 |
+
|
158 |
+
The main difference with PCR is that the PLS transformation is supervised. Therefore, as we will see in this example,
|
159 |
+
it does not suffer from the issue we just mentioned.
|
160 |
+
""")
|
161 |
+
|
162 |
+
gr.Markdown("You can see the associated scikit-learn example [here](https://scikit-learn.org/stable/auto_examples/cross_decomposition/plot_pcr_vs_pls.html#sphx-glr-auto-examples-cross-decomposition-plot-pcr-vs-pls-py).")
|
163 |
+
|
164 |
+
# loaded_model = load_hf_model_hub()
|
165 |
+
|
166 |
+
with gr.Tab("Visualize Input dataset"):
|
167 |
+
|
168 |
+
|
169 |
+
with gr.Row(equal_height=True):
|
170 |
+
slider1 = gr.Slider(label="alpha", minimum=0.0, maximum=1.0)
|
171 |
+
|
172 |
+
|
173 |
+
slider1.change(plot_scatter_pca, slider1, outputs= gr.Plot(label='Visualizing input dataset') )
|
174 |
+
|
175 |
+
|
176 |
+
with gr.Tab("PCA data projections"):
|
177 |
+
btn_decision = gr.Button(value="PCA data projections")
|
178 |
+
btn_decision.click(data_projections, outputs= gr.Plot(label='PCA data projections') )
|
179 |
+
|
180 |
+
|
181 |
+
with gr.Tab("predictive power"):
|
182 |
+
btn_power = gr.Button(value="Predictive power")
|
183 |
+
btn_power.click(plot_pca_ls, outputs= gr.Plot(label='Predictive power') )
|
184 |
+
|
185 |
+
|
186 |
+
with gr.Tab("Results tab"):
|
187 |
+
gr.Markdown(
|
188 |
+
"""
|
189 |
+
As a final remark,
|
190 |
+
we note that PCR with 2 components performs as well as PLS: this is because in this case,
|
191 |
+
PCR was able to leverage the second component which has the most preditive power on the target.
|
192 |
+
""")
|
193 |
+
btn_power = gr.Button(value="Results")
|
194 |
+
out = gr.Textbox(label="r2 score of both estimators")
|
195 |
+
btn_power.click(print_results, outputs= out )
|
196 |
+
|
197 |
+
|
198 |
+
with gr.Tab("r2_score of predictors comparison"):
|
199 |
+
with gr.Row(equal_height=True):
|
200 |
+
gr.Markdown(
|
201 |
+
"""
|
202 |
+
We also print the R-squared scores of both estimators, which further confirms that PLS is a better alternative than PCR in this case.
|
203 |
+
A negative R-squared indicates that PCR performs worse than a regressor that would simply predict the mean of the target.
|
204 |
+
""")
|
205 |
+
btn_1 = gr.Button(value="r2_score of predictors")
|
206 |
+
out1 = gr.Textbox(label="r2_score of predictors")
|
207 |
+
btn_1.click(calc_pcr_r2, outputs= out1 )
|
208 |
+
|
209 |
+
|
210 |
+
|
211 |
+
|
212 |
+
|
213 |
+
|
214 |
+
|
215 |
+
gr.Markdown( f"## End of page")
|
216 |
+
demo.launch()
|