Create the lr example
Browse files- app.py +90 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
|
| 3 |
+
import matplotlib.pyplot as plt
|
| 4 |
+
import numpy as np
|
| 5 |
+
from sklearn import datasets, linear_model
|
| 6 |
+
from sklearn.metrics import mean_squared_error, r2_score
|
| 7 |
+
|
| 8 |
+
from functools import partial
|
| 9 |
+
|
| 10 |
+
FIGSIZE = (10,10)
|
| 11 |
+
|
| 12 |
+
feature_names = ["age", "body-mass index (BMI)", "blood pressure",
|
| 13 |
+
"total serum cholesterol", "low-density lipoproteins (LDL)",
|
| 14 |
+
"high-density lipoproteins (HDL)", "total cholesterol / HDL",
|
| 15 |
+
"log of serum triglycerides level (possibly)","blood sugar level"]
|
| 16 |
+
|
| 17 |
+
def create_dataset(feature_id=2):
|
| 18 |
+
# Load the diabetes dataset
|
| 19 |
+
diabetes_X, diabetes_y = datasets.load_diabetes(return_X_y=True)
|
| 20 |
+
|
| 21 |
+
# Use only one feature
|
| 22 |
+
diabetes_X = diabetes_X[:, np.newaxis, feature_id]
|
| 23 |
+
|
| 24 |
+
# Split the data into training/testing sets
|
| 25 |
+
diabetes_X_train = diabetes_X[:-20]
|
| 26 |
+
diabetes_X_test = diabetes_X[-20:]
|
| 27 |
+
|
| 28 |
+
# Split the targets into training/testing sets
|
| 29 |
+
diabetes_y_train = diabetes_y[:-20]
|
| 30 |
+
diabetes_y_test = diabetes_y[-20:]
|
| 31 |
+
|
| 32 |
+
return diabetes_X_train, diabetes_X_test, diabetes_y_train, diabetes_y_test
|
| 33 |
+
|
| 34 |
+
def train_model(input_data):
|
| 35 |
+
|
| 36 |
+
# We reomved the sex variable
|
| 37 |
+
if input_data == 'age':
|
| 38 |
+
feature_id = 0
|
| 39 |
+
else:
|
| 40 |
+
feature_id = feature_names.index(input_data) + 1
|
| 41 |
+
|
| 42 |
+
diabetes_X_train, diabetes_X_test, diabetes_y_train, diabetes_y_test = create_dataset(feature_id)
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
# Create linear regression object
|
| 46 |
+
regr = linear_model.LinearRegression()
|
| 47 |
+
|
| 48 |
+
# Train the model using the training sets
|
| 49 |
+
regr.fit(diabetes_X_train, diabetes_y_train)
|
| 50 |
+
|
| 51 |
+
# Make predictions using the testing set
|
| 52 |
+
diabetes_y_pred = regr.predict(diabetes_X_test)
|
| 53 |
+
|
| 54 |
+
mse = mean_squared_error(diabetes_y_test, diabetes_y_pred)
|
| 55 |
+
r2 = r2_score(diabetes_y_test, diabetes_y_pred)
|
| 56 |
+
|
| 57 |
+
# Plot outputs
|
| 58 |
+
fig = plt.figure(figsize=FIGSIZE)
|
| 59 |
+
|
| 60 |
+
plt.title(input_data)
|
| 61 |
+
plt.scatter(diabetes_X_test, diabetes_y_test, color="black")
|
| 62 |
+
plt.plot(diabetes_X_test, diabetes_y_pred, color="blue", linewidth=3)
|
| 63 |
+
|
| 64 |
+
plt.xticks(())
|
| 65 |
+
plt.yticks(())
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
return fig, regr.coef_, mse, r2
|
| 70 |
+
|
| 71 |
+
title = "Linear Regression Example"
|
| 72 |
+
description = "The example shows how linear regression attempts to draw a straight line that will best minimize the residual sum of squares between the observed responses in the dataset"
|
| 73 |
+
with gr.Blocks() as demo:
|
| 74 |
+
gr.Markdown(f"## {title}")
|
| 75 |
+
gr.Markdown(description)
|
| 76 |
+
|
| 77 |
+
with gr.Column():
|
| 78 |
+
|
| 79 |
+
with gr.Row():
|
| 80 |
+
plot = gr.Plot(label="Feature")
|
| 81 |
+
with gr.Column():
|
| 82 |
+
input_data = gr.Dropdown(choices=feature_names, label="Feature", value="body-mass index")
|
| 83 |
+
coef = gr.Textbox(label="Coefficients")
|
| 84 |
+
mse = gr.Textbox(label="MSE")
|
| 85 |
+
r2 = gr.Textbox(label="R2")
|
| 86 |
+
|
| 87 |
+
input_data.change(fn=train_model, inputs=[input_data], outputs=[plot, coef, mse, r2], queue=False)
|
| 88 |
+
|
| 89 |
+
|
| 90 |
+
demo.launch(enable_queue=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
scikit-learn
|
| 2 |
+
matplotlib
|
| 3 |
+
numpy
|
| 4 |
+
|