Mohammad Haizad
commited on
Commit
·
564fdde
1
Parent(s):
5a02990
initial commit
Browse files- README.md +1 -1
- app.py +123 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -4,7 +4,7 @@ emoji: 🏃
|
|
4 |
colorFrom: gray
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 3.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
|
|
4 |
colorFrom: gray
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 3.27.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: mit
|
app.py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib
|
4 |
+
matplotlib.use("Agg")
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
from sklearn.datasets import fetch_openml
|
7 |
+
from sklearn.utils import shuffle
|
8 |
+
from sklearn.ensemble import StackingRegressor
|
9 |
+
from sklearn.linear_model import RidgeCV
|
10 |
+
from skops.hub_utils import download
|
11 |
+
import joblib
|
12 |
+
import shutil
|
13 |
+
|
14 |
+
# load dataset
|
15 |
+
def load_ames_housing():
|
16 |
+
df = fetch_openml(name="house_prices", as_frame=True, parser="pandas")
|
17 |
+
X = df.data
|
18 |
+
y = df.target
|
19 |
+
|
20 |
+
features = [
|
21 |
+
"YrSold",
|
22 |
+
"HeatingQC",
|
23 |
+
"Street",
|
24 |
+
"YearRemodAdd",
|
25 |
+
"Heating",
|
26 |
+
"MasVnrType",
|
27 |
+
"BsmtUnfSF",
|
28 |
+
"Foundation",
|
29 |
+
"MasVnrArea",
|
30 |
+
"MSSubClass",
|
31 |
+
"ExterQual",
|
32 |
+
"Condition2",
|
33 |
+
"GarageCars",
|
34 |
+
"GarageType",
|
35 |
+
"OverallQual",
|
36 |
+
"TotalBsmtSF",
|
37 |
+
"BsmtFinSF1",
|
38 |
+
"HouseStyle",
|
39 |
+
"MiscFeature",
|
40 |
+
"MoSold",
|
41 |
+
]
|
42 |
+
|
43 |
+
X = X.loc[:, features]
|
44 |
+
X, y = shuffle(X, y, random_state=0)
|
45 |
+
|
46 |
+
X = X.iloc[:600]
|
47 |
+
y = y.iloc[:600]
|
48 |
+
return X, np.log(y)
|
49 |
+
|
50 |
+
def stacked_model(model1,model2,model3):
|
51 |
+
X, y = load_ames_housing()
|
52 |
+
estimators = []
|
53 |
+
for model in [model1,model2,model3]:
|
54 |
+
download(repo_id="haizad/ames-housing-lasso-predictor", dst='temp_dir')
|
55 |
+
pipeline = joblib.load( "temp_dir/model.pkl")
|
56 |
+
estimators.append((model.split('/')[-1], pipeline))
|
57 |
+
shutil.rmtree("temp_dir")
|
58 |
+
|
59 |
+
stacking_regressor = StackingRegressor(estimators=estimators, final_estimator=RidgeCV())
|
60 |
+
|
61 |
+
# plot and compare the performance of the single models and the stacked model
|
62 |
+
import time
|
63 |
+
import matplotlib.pyplot as plt
|
64 |
+
from sklearn.metrics import PredictionErrorDisplay
|
65 |
+
from sklearn.model_selection import cross_validate, cross_val_predict
|
66 |
+
|
67 |
+
fig, axs = plt.subplots(2, 2, figsize=(9, 7))
|
68 |
+
axs = np.ravel(axs)
|
69 |
+
|
70 |
+
for ax, (name, est) in zip(
|
71 |
+
axs, estimators + [("Stacking Regressor", stacking_regressor)]
|
72 |
+
):
|
73 |
+
scorers = {"R2": "r2", "MAE": "neg_mean_absolute_error"}
|
74 |
+
|
75 |
+
start_time = time.time()
|
76 |
+
scores = cross_validate(
|
77 |
+
est, X, y, scoring=list(scorers.values()), n_jobs=-1, verbose=0
|
78 |
+
)
|
79 |
+
|
80 |
+
elapsed_time = time.time() - start_time
|
81 |
+
|
82 |
+
y_pred = cross_val_predict(est, X, y, n_jobs=-1, verbose=0)
|
83 |
+
scores = {
|
84 |
+
key: (
|
85 |
+
f"{np.abs(np.mean(scores[f'test_{value}'])):.2f} +- "
|
86 |
+
f"{np.std(scores[f'test_{value}']):.2f}"
|
87 |
+
)
|
88 |
+
for key, value in scorers.items()
|
89 |
+
}
|
90 |
+
|
91 |
+
display = PredictionErrorDisplay.from_predictions(
|
92 |
+
y_true=y,
|
93 |
+
y_pred=y_pred,
|
94 |
+
kind="actual_vs_predicted",
|
95 |
+
ax=ax,
|
96 |
+
scatter_kwargs={"alpha": 0.2, "color": "tab:blue"},
|
97 |
+
line_kwargs={"color": "tab:red"},
|
98 |
+
)
|
99 |
+
ax.set_title(f"{name}\nEvaluation in {elapsed_time:.2f} seconds")
|
100 |
+
|
101 |
+
for name, score in scores.items():
|
102 |
+
ax.plot([], [], " ", label=f"{name}: {score}")
|
103 |
+
ax.legend(loc="upper left")
|
104 |
+
|
105 |
+
fig.suptitle("Single predictors versus stacked predictors")
|
106 |
+
fig.tight_layout()
|
107 |
+
fig.subplots_adjust(top=0.9)
|
108 |
+
return fig
|
109 |
+
|
110 |
+
title = "Multi-class AdaBoosted Decision Trees"
|
111 |
+
with gr.Blocks(title=title) as demo:
|
112 |
+
gr.Markdown(f"## {title}")
|
113 |
+
gr.Markdown("This app demonstrates the Multi-class AdaBoosted Decision Trees")
|
114 |
+
|
115 |
+
model1 = gr.Textbox(label="Repo id of first model")
|
116 |
+
model2 = gr.Textbox(label="Repo id of second model")
|
117 |
+
model3 = gr.Textbox(label="Repo id of third model")
|
118 |
+
plot = gr.Plot()
|
119 |
+
stack_btn = gr.Button("Stack")
|
120 |
+
stack_btn.click(fn=stacked_model, inputs=[model1,model2,model3], outputs=[plot])
|
121 |
+
|
122 |
+
demo.launch()
|
123 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
scikit-learn==1.2.2
|
2 |
+
matplotlib==3.7.1
|
3 |
+
skops==0.6.0
|