Spaces:
Runtime error
Runtime error
Benjamin Bossan
commited on
Commit
·
6674a4f
1
Parent(s):
bb1f0db
Initial commit
Browse files- README.md +5 -1
- app.py +206 -0
- requirements.txt +2 -0
README.md
CHANGED
|
@@ -8,6 +8,10 @@ sdk_version: 3.0.24
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: bsd-3-clause
|
|
|
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
-
|
|
|
|
|
|
|
|
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
license: bsd-3-clause
|
| 11 |
+
tags:
|
| 12 |
+
- sklearn
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# Clustering with scikit learn
|
| 16 |
+
|
| 17 |
+
Gradio demo based on this [sklearn demo](https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html).
|
app.py
ADDED
|
@@ -0,0 +1,206 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Gradio demo for different clustering techiniques
|
| 2 |
+
|
| 3 |
+
Derived from https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html
|
| 4 |
+
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import gradio as gr
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
import numpy as np
|
| 10 |
+
from sklearn.cluster import (
|
| 11 |
+
AgglomerativeClustering, Birch, DBSCAN, KMeans, MeanShift, OPTICS, SpectralClustering, estimate_bandwidth
|
| 12 |
+
)
|
| 13 |
+
from sklearn.datasets import make_blobs, make_circles, make_moons
|
| 14 |
+
from sklearn.mixture import GaussianMixture
|
| 15 |
+
from sklearn.neighbors import kneighbors_graph
|
| 16 |
+
from sklearn.preprocessing import StandardScaler
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
plt.style.use('seaborn')
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
SEED = 0
|
| 23 |
+
N_CLUSTERS = 4
|
| 24 |
+
N_SAMPLES = 1000
|
| 25 |
+
np.random.seed(SEED)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def normalize(X):
|
| 29 |
+
return StandardScaler().fit_transform(X)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def get_regular():
|
| 33 |
+
centers = [[1, 1], [1, -1], [-1, 1], [-1, -1]]
|
| 34 |
+
assert len(centers) == N_CLUSTERS
|
| 35 |
+
X, labels = make_blobs(n_samples=N_SAMPLES, centers=centers, cluster_std=0.7, random_state=SEED)
|
| 36 |
+
return normalize(X), labels
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def get_circles():
|
| 40 |
+
X, labels = make_circles(n_samples=N_SAMPLES, factor=0.5, noise=0.05, random_state=SEED)
|
| 41 |
+
return normalize(X), labels
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def get_moons():
|
| 45 |
+
X, labels = make_moons(n_samples=N_SAMPLES, noise=0.05, random_state=SEED)
|
| 46 |
+
return normalize(X), labels
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def get_noise():
|
| 50 |
+
X, labels = np.random.rand(N_SAMPLES, 2), np.zeros(N_SAMPLES)
|
| 51 |
+
return normalize(X), labels
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def get_anisotropic():
|
| 55 |
+
X, labels = make_blobs(n_samples=N_SAMPLES, centers=N_CLUSTERS, random_state=170)
|
| 56 |
+
transformation = [[0.6, -0.6], [-0.4, 0.8]]
|
| 57 |
+
X = np.dot(X, transformation)
|
| 58 |
+
return X, labels
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
def get_varied():
|
| 62 |
+
X, labels = make_blobs(
|
| 63 |
+
n_samples=N_SAMPLES, cluster_std=[1.0, 2.5, 0.5], random_state=SEED
|
| 64 |
+
)
|
| 65 |
+
return normalize(X), labels
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
DATA_MAPPING = {
|
| 69 |
+
'regular': get_regular,
|
| 70 |
+
'circles': get_circles,
|
| 71 |
+
'moons': get_moons,
|
| 72 |
+
'noise': get_noise,
|
| 73 |
+
'anisotropic': get_anisotropic,
|
| 74 |
+
'varied': get_varied,
|
| 75 |
+
}
|
| 76 |
+
|
| 77 |
+
def get_kmeans(X, **kwargs):
|
| 78 |
+
model = KMeans(init="k-means++", n_clusters=N_CLUSTERS, n_init=10, random_state=SEED)
|
| 79 |
+
model.set_params(**kwargs)
|
| 80 |
+
return model.fit(X)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def get_dbscan(X, **kwargs):
|
| 84 |
+
model = DBSCAN(eps=0.3)
|
| 85 |
+
model.set_params(**kwargs)
|
| 86 |
+
return model.fit(X)
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
def get_agglomerative(X, **kwargs):
|
| 90 |
+
connectivity = kneighbors_graph(
|
| 91 |
+
X, n_neighbors=N_CLUSTERS, include_self=False
|
| 92 |
+
)
|
| 93 |
+
# make connectivity symmetric
|
| 94 |
+
connectivity = 0.5 * (connectivity + connectivity.T)
|
| 95 |
+
model = AgglomerativeClustering(
|
| 96 |
+
n_clusters=N_CLUSTERS, linkage="ward", connectivity=connectivity
|
| 97 |
+
)
|
| 98 |
+
model.set_params(**kwargs)
|
| 99 |
+
return model.fit(X)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def get_meanshift(X, **kwargs):
|
| 103 |
+
bandwidth = estimate_bandwidth(X, quantile=0.3)
|
| 104 |
+
model = MeanShift(bandwidth=bandwidth, bin_seeding=True)
|
| 105 |
+
model.set_params(**kwargs)
|
| 106 |
+
return model.fit(X)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def get_spectral(X, **kwargs):
|
| 110 |
+
model = SpectralClustering(
|
| 111 |
+
n_clusters=N_CLUSTERS,
|
| 112 |
+
eigen_solver="arpack",
|
| 113 |
+
affinity="nearest_neighbors",
|
| 114 |
+
)
|
| 115 |
+
model.set_params(**kwargs)
|
| 116 |
+
return model.fit(X)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def get_optics(X, **kwargs):
|
| 120 |
+
model = OPTICS(
|
| 121 |
+
min_samples=7,
|
| 122 |
+
xi=0.05,
|
| 123 |
+
min_cluster_size=0.1,
|
| 124 |
+
)
|
| 125 |
+
model.set_params(**kwargs)
|
| 126 |
+
return model.fit(X)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
def get_birch(X, **kwargs):
|
| 130 |
+
model = Birch(n_clusters=3)
|
| 131 |
+
model.set_params(**kwargs)
|
| 132 |
+
return model.fit(X)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def get_gaussianmixture(X, **kwargs):
|
| 136 |
+
model = GaussianMixture(
|
| 137 |
+
n_components=N_CLUSTERS, covariance_type="full", random_state=SEED,
|
| 138 |
+
)
|
| 139 |
+
model.set_params(**kwargs)
|
| 140 |
+
return model.fit(X)
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
MODEL_MAPPING = {
|
| 144 |
+
'KMeans': get_kmeans,
|
| 145 |
+
'DBSCAN': get_dbscan,
|
| 146 |
+
'AgglomerativeClustering': get_agglomerative,
|
| 147 |
+
'MeanShift': get_meanshift,
|
| 148 |
+
'SpectralClustering': get_spectral,
|
| 149 |
+
'OPTICS': get_optics,
|
| 150 |
+
'Birch': get_birch,
|
| 151 |
+
'GaussianMixture': get_gaussianmixture,
|
| 152 |
+
}
|
| 153 |
+
|
| 154 |
+
|
| 155 |
+
def plot_clusters(ax, X, labels):
|
| 156 |
+
for label in range(N_CLUSTERS):
|
| 157 |
+
idx = labels == label
|
| 158 |
+
if not sum(idx):
|
| 159 |
+
continue
|
| 160 |
+
ax.scatter(X[idx, 0], X[idx, 1])
|
| 161 |
+
|
| 162 |
+
ax.grid(None)
|
| 163 |
+
ax.set_xticks([])
|
| 164 |
+
ax.set_yticks([])
|
| 165 |
+
return ax
|
| 166 |
+
|
| 167 |
+
|
| 168 |
+
def cluster(clustering_algorithm: str, dataset: str):
|
| 169 |
+
X, labels = DATA_MAPPING[dataset]()
|
| 170 |
+
model = MODEL_MAPPING[clustering_algorithm](X)
|
| 171 |
+
if hasattr(model, "labels_"):
|
| 172 |
+
y_pred = model.labels_.astype(int)
|
| 173 |
+
else:
|
| 174 |
+
y_pred = model.predict(X)
|
| 175 |
+
|
| 176 |
+
fig, axes = plt.subplots(1, 2, figsize=(16, 8))
|
| 177 |
+
|
| 178 |
+
ax = axes[0]
|
| 179 |
+
plot_clusters(ax, X, labels)
|
| 180 |
+
ax.set_title("True clusters")
|
| 181 |
+
|
| 182 |
+
ax = axes[1]
|
| 183 |
+
plot_clusters(ax, X, y_pred)
|
| 184 |
+
ax.set_title(clustering_algorithm)
|
| 185 |
+
|
| 186 |
+
return fig
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
demo = gr.Interface(
|
| 190 |
+
fn=cluster,
|
| 191 |
+
inputs=[
|
| 192 |
+
gr.Radio(
|
| 193 |
+
list(MODEL_MAPPING),
|
| 194 |
+
value="KMeans",
|
| 195 |
+
label="clustering algorithm"
|
| 196 |
+
),
|
| 197 |
+
gr.Radio(
|
| 198 |
+
list(DATA_MAPPING),
|
| 199 |
+
value="regular",
|
| 200 |
+
label="dataset"
|
| 201 |
+
),
|
| 202 |
+
],
|
| 203 |
+
outputs=gr.Plot(),
|
| 204 |
+
)
|
| 205 |
+
|
| 206 |
+
demo.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
matplotlib>=3.5.2
|
| 2 |
+
scikit-learn>=1.0.1
|