Spaces:
Paused
Paused
Commit
·
bc83f23
1
Parent(s):
faa9c6e
initial commit
Browse files- app.py +173 -0
- requirements.txt +2 -0
app.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
from matplotlib.colors import ListedColormap
|
| 4 |
+
from sklearn.model_selection import train_test_split
|
| 5 |
+
from sklearn.preprocessing import StandardScaler
|
| 6 |
+
from sklearn.datasets import make_moons, make_circles, make_classification
|
| 7 |
+
from sklearn.neural_network import MLPClassifier
|
| 8 |
+
from sklearn.neighbors import KNeighborsClassifier
|
| 9 |
+
from sklearn.svm import SVC
|
| 10 |
+
from sklearn.gaussian_process import GaussianProcessClassifier
|
| 11 |
+
from sklearn.gaussian_process.kernels import RBF
|
| 12 |
+
from sklearn.tree import DecisionTreeClassifier
|
| 13 |
+
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
|
| 14 |
+
from sklearn.naive_bayes import GaussianNB
|
| 15 |
+
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
|
| 16 |
+
from sklearn.inspection import DecisionBoundaryDisplay
|
| 17 |
+
from sklearn.datasets import make_blobs, make_circles, make_moons
|
| 18 |
+
import gradio as gr
|
| 19 |
+
import math
|
| 20 |
+
from functools import partial
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
### DATASETS
|
| 25 |
+
|
| 26 |
+
def normalize(X):
|
| 27 |
+
return StandardScaler().fit_transform(X)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def linearly_separable():
|
| 31 |
+
X, y = make_classification(
|
| 32 |
+
n_features=2, n_redundant=0, n_informative=2, random_state=1, n_clusters_per_class=1
|
| 33 |
+
)
|
| 34 |
+
rng = np.random.RandomState(2)
|
| 35 |
+
X += 2 * rng.uniform(size=X.shape)
|
| 36 |
+
linearly_separable = (X, y)
|
| 37 |
+
return linearly_separable
|
| 38 |
+
|
| 39 |
+
DATA_MAPPING = {
|
| 40 |
+
"Moons": make_moons(noise=0.3, random_state=0),
|
| 41 |
+
"Circles":make_circles(noise=0.2, factor=0.5, random_state=1),
|
| 42 |
+
"Linearly Separable Random Dataset": linearly_separable(),
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
#### MODELS
|
| 47 |
+
|
| 48 |
+
def get_groundtruth_model(X, labels):
|
| 49 |
+
# dummy model to show true label distribution
|
| 50 |
+
class Dummy:
|
| 51 |
+
def __init__(self, y):
|
| 52 |
+
self.labels_ = labels
|
| 53 |
+
|
| 54 |
+
return Dummy(labels)
|
| 55 |
+
|
| 56 |
+
DATASETS = [
|
| 57 |
+
make_moons(noise=0.3, random_state=0),
|
| 58 |
+
make_circles(noise=0.2, factor=0.5, random_state=1),
|
| 59 |
+
linearly_separable()
|
| 60 |
+
]
|
| 61 |
+
NAME_CLF_MAPPING = {
|
| 62 |
+
"Ground Truth":get_groundtruth_model,
|
| 63 |
+
"Nearest Neighbors":KNeighborsClassifier(3),
|
| 64 |
+
"Linear SVM":SVC(kernel="linear", C=0.025),
|
| 65 |
+
"RBF SVM":SVC(gamma=2, C=1),
|
| 66 |
+
"Gaussian Process":GaussianProcessClassifier(1.0 * RBF(1.0)),
|
| 67 |
+
"Decision Tree":DecisionTreeClassifier(max_depth=5),
|
| 68 |
+
"Random Forest":RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
|
| 69 |
+
"Neural Net":MLPClassifier(alpha=1, max_iter=1000),
|
| 70 |
+
"AdaBoost":AdaBoostClassifier(),
|
| 71 |
+
"Naive Bayes":GaussianNB(),
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
#### PLOT
|
| 77 |
+
FIGSIZE = 7,7
|
| 78 |
+
figure = plt.figure(figsize=(25, 10))
|
| 79 |
+
i = 1
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def train_models(selected_data, clf_name):
|
| 85 |
+
cm = plt.cm.RdBu
|
| 86 |
+
cm_bright = ListedColormap(["#FF0000", "#0000FF"])
|
| 87 |
+
clf = NAME_CLF_MAPPING[clf_name]
|
| 88 |
+
|
| 89 |
+
X, y = DATA_MAPPING[selected_data]
|
| 90 |
+
X = StandardScaler().fit_transform(X)
|
| 91 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
| 92 |
+
X, y, test_size=0.4, random_state=42
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5
|
| 96 |
+
y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5
|
| 97 |
+
if clf_name != "Ground Truth":
|
| 98 |
+
clf.fit(X_train, y_train)
|
| 99 |
+
score = clf.score(X_test, y_test)
|
| 100 |
+
fig, ax = plt.subplots(figsize=FIGSIZE)
|
| 101 |
+
ax.set_title(clf_name, fontsize = 10)
|
| 102 |
+
|
| 103 |
+
DecisionBoundaryDisplay.from_estimator(
|
| 104 |
+
clf, X, cmap=cm, alpha=0.8, ax=ax, eps=0.5
|
| 105 |
+
).plot()
|
| 106 |
+
return fig
|
| 107 |
+
else:
|
| 108 |
+
#########
|
| 109 |
+
|
| 110 |
+
for ds_cnt, ds in enumerate(DATASETS):
|
| 111 |
+
X, y = ds
|
| 112 |
+
|
| 113 |
+
x_min, x_max = X[:, 0].min() - 0.5, X[:, 0].max() + 0.5
|
| 114 |
+
y_min, y_max = X[:, 1].min() - 0.5, X[:, 1].max() + 0.5
|
| 115 |
+
|
| 116 |
+
# just plot the dataset first
|
| 117 |
+
cm = plt.cm.RdBu
|
| 118 |
+
cm_bright = ListedColormap(["#FF0000", "#0000FF"])
|
| 119 |
+
fig, ax = plt.subplots(figsize=FIGSIZE)
|
| 120 |
+
ax.set_title("Input data")
|
| 121 |
+
# Plot the training points
|
| 122 |
+
|
| 123 |
+
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright, edgecolors="k")
|
| 124 |
+
# Plot the testing points
|
| 125 |
+
ax.scatter(
|
| 126 |
+
X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6, edgecolors="k"
|
| 127 |
+
)
|
| 128 |
+
ax.set_xlim(x_min, x_max)
|
| 129 |
+
ax.set_ylim(y_min, y_max)
|
| 130 |
+
ax.set_xticks(())
|
| 131 |
+
ax.set_yticks(())
|
| 132 |
+
|
| 133 |
+
return fig
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
###########
|
| 138 |
+
description = "Learn how different statistical classifiers perform in different datasets."
|
| 139 |
+
|
| 140 |
+
def iter_grid(n_rows, n_cols):
|
| 141 |
+
# create a grid using gradio Block
|
| 142 |
+
for _ in range(n_rows):
|
| 143 |
+
with gr.Row():
|
| 144 |
+
for _ in range(n_cols):
|
| 145 |
+
with gr.Column():
|
| 146 |
+
yield
|
| 147 |
+
|
| 148 |
+
title = "Classification"
|
| 149 |
+
with gr.Blocks(title=title) as demo:
|
| 150 |
+
gr.HTML(f"<b>{title}</b>")
|
| 151 |
+
gr.Markdown(description)
|
| 152 |
+
|
| 153 |
+
input_models = list(NAME_CLF_MAPPING)
|
| 154 |
+
input_data = gr.Radio(
|
| 155 |
+
choices=["Moons", "Circles", "Linearly Separable Random Dataset"],
|
| 156 |
+
value="Moons"
|
| 157 |
+
)
|
| 158 |
+
counter = 0
|
| 159 |
+
|
| 160 |
+
plot_run = gr.Button("Run")
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
for _ in iter_grid(2, 5):
|
| 164 |
+
if counter >= len(input_models):
|
| 165 |
+
break
|
| 166 |
+
|
| 167 |
+
input_model = input_models[counter]
|
| 168 |
+
plot = gr.Plot(label=input_model)
|
| 169 |
+
fn = partial(train_models, clf_name=input_model)
|
| 170 |
+
input_data.change(fn=fn, inputs=[input_data], outputs=plot)
|
| 171 |
+
counter += 1
|
| 172 |
+
|
| 173 |
+
demo.launch(debug=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
scikit-learn
|
| 2 |
+
matplotlib
|