|
import numpy as np |
|
|
|
from sklearn.cluster import AffinityPropagation |
|
from sklearn import metrics |
|
from sklearn.datasets import make_blobs |
|
|
|
import matplotlib.pyplot as plt |
|
import matplotlib |
|
matplotlib.use('agg') |
|
|
|
import gradio as gr |
|
|
|
def generate_data(num_centers, num_samples): |
|
all_centers = [[1, 1], [-1, -1], [1, -1], [-1, 1]] |
|
centers = all_centers[:num_centers] |
|
|
|
X, labels_true = make_blobs(n_samples=num_samples, centers=centers, cluster_std=0.5, random_state=0) |
|
|
|
return X, labels_true |
|
|
|
|
|
def create_plot(num_clusters, num_samples): |
|
X, labels_true = generate_data(num_clusters, num_samples) |
|
|
|
af = AffinityPropagation(preference=-50, random_state=0).fit(X) |
|
cluster_centers_indices = af.cluster_centers_indices_ |
|
labels = af.labels_ |
|
|
|
n_clusters_ = len(cluster_centers_indices) |
|
|
|
metrics_str = f"Estimated number of clusters: {n_clusters_}\n" |
|
metrics_str += f"Homogeneity: {metrics.homogeneity_score(labels_true, labels):0.3f}\n" |
|
metrics_str += f"Completeness: {metrics.completeness_score(labels_true, labels):0.3f}\n" |
|
metrics_str += f"V-measure: {metrics.v_measure_score(labels_true, labels):0.3f}\n" |
|
metrics_str += f"Adjusted Rand Index: {metrics.adjusted_rand_score(labels_true, labels):0.3f}\n" |
|
metrics_str += f"Adjusted Mutual Information: {metrics.adjusted_mutual_info_score(labels_true, labels):0.3f}\n" |
|
metrics_str += f"Silhouette Coefficient: {metrics.silhouette_score(X, labels, metric='sqeuclidean'):0.3f}\n" |
|
|
|
fig = plt.figure(1) |
|
plt.clf() |
|
|
|
colors = plt.cycler("color", plt.cm.viridis(np.linspace(0, 1, n_clusters_))) |
|
|
|
for k, col in zip(range(n_clusters_), colors): |
|
class_members = labels == k |
|
cluster_center = X[cluster_centers_indices[k]] |
|
plt.scatter( |
|
X[class_members, 0], X[class_members, 1], color=col["color"], marker="." |
|
) |
|
plt.scatter( |
|
cluster_center[0], cluster_center[1], s=14, color=col["color"], marker="o" |
|
) |
|
for x in X[class_members]: |
|
plt.plot( |
|
[cluster_center[0], x[0]], [cluster_center[1], x[1]], color=col["color"] |
|
) |
|
|
|
plt.title("Estimated number of clusters: %d" % n_clusters_) |
|
plt.xlabel("x") |
|
plt.ylabel("y") |
|
|
|
return fig, metrics_str |
|
|
|
title = "Affinity propagation clustering algorithm" |
|
description = """ |
|
This demo plots clusters of a synthetic 2D dataset that contains up to 4 clusters using the affinity propagation algorithm.\ |
|
|
|
|
|
The 2-dimensional dataset is generated around 2 to 4 predetermined cluster centers, by sampling a Gaussian distribution \ |
|
with 0.5 standard deviation around each center. The demo uses the affinity propagation clustering algorithm to assign the data into \ |
|
clusters. It also calculates a cluster center. \ |
|
|
|
|
|
The figure shows a scatter plot of the data points and their connection to the respective cluster center. The demo also \ |
|
presents several metrics based on the true and assigned labels. |
|
|
|
""" |
|
with gr.Blocks() as demo: |
|
gr.Markdown(f"## {title}") |
|
gr.Markdown(description) |
|
|
|
num_clusters = gr.Slider(minimum=2, maximum=4, step=1, value=2, label="Number of clusters") |
|
num_samples = gr.Slider(minimum=100, maximum=300, step=100, value=200, label="Number of samples") |
|
|
|
with gr.Row(): |
|
plot = gr.Plot() |
|
text_box = gr.Textbox(label="Results") |
|
|
|
|
|
num_clusters.change(fn=create_plot, inputs=[num_clusters, num_samples], outputs=[plot, text_box]) |
|
num_samples.change(fn=create_plot, inputs=[num_clusters, num_samples], outputs=[plot, text_box]) |
|
|
|
demo.launch(enable_queue=True) |