Initial commit
Browse files- app.py +75 -0
- requirements.txt +1 -0
app.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Demo is based on https://scikit-learn.org/stable/auto_examples/feature_selection/plot_rfe_digits.html
|
3 |
+
"""
|
4 |
+
from sklearn.svm import SVC
|
5 |
+
from sklearn.datasets import load_digits
|
6 |
+
from sklearn.feature_selection import RFE
|
7 |
+
import matplotlib.pyplot as plt
|
8 |
+
|
9 |
+
# Load the digits dataset
|
10 |
+
digits = load_digits()
|
11 |
+
X = digits.images.reshape((len(digits.images), -1))
|
12 |
+
y = digits.target
|
13 |
+
|
14 |
+
# Create the RFE object and rank each pixel
|
15 |
+
svc = SVC(kernel="linear", C=1)
|
16 |
+
|
17 |
+
|
18 |
+
def recursive_feature_elimination(n_features_to_select, step, esimator=svc):
|
19 |
+
# Plot the results
|
20 |
+
fig = plt.figure()
|
21 |
+
rfe = RFE(estimator=esimator, n_features_to_select=1, step=1)
|
22 |
+
# step : Number of feature to remove at each iteration, least important are removed
|
23 |
+
# n_features_to_select : Number of features to be selected after repeated elimination
|
24 |
+
rfe.fit(X, y)
|
25 |
+
ranking = rfe.ranking_.reshape(digits.images[0].shape)
|
26 |
+
|
27 |
+
# Plot pixel ranking
|
28 |
+
plt.matshow(ranking, cmap=plt.cm.Blues)
|
29 |
+
plt.colorbar()
|
30 |
+
plt.title("Ranking of pixels with RFE")
|
31 |
+
# plt.show()
|
32 |
+
return plt
|
33 |
+
|
34 |
+
|
35 |
+
import gradio as gr
|
36 |
+
|
37 |
+
title = " Illustration of Recursive feature elimination.🌲 "
|
38 |
+
|
39 |
+
with gr.Blocks(title=title) as demo:
|
40 |
+
gr.Markdown(f"# {title}")
|
41 |
+
gr.Markdown(
|
42 |
+
" This example the feature importnace by using Recursive feature elimination <br>"
|
43 |
+
" Dataset is load_digits() which is images of size 8 X 8 hand-written digits <br>"
|
44 |
+
" **Parameters** <br> <br> **Number of features to select** : Represents the features left at the end of feature selection process. <br>"
|
45 |
+
" **Step** : Number of feature to remove at each iteration, least important are removed. <br>"
|
46 |
+
)
|
47 |
+
|
48 |
+
gr.Markdown(
|
49 |
+
" Support Vector classifier is used as estimator to rank features. <br>"
|
50 |
+
)
|
51 |
+
|
52 |
+
gr.Markdown(
|
53 |
+
" **[Demo is based on sklearn docs](https://scikit-learn.org/stable/auto_examples/feature_selection/plot_rfe_digits.html)**"
|
54 |
+
)
|
55 |
+
with gr.Row():
|
56 |
+
n_features_to_select = gr.Slider(
|
57 |
+
minimum=0, maximum=20, step=1, value=1, label="Number of features to select"
|
58 |
+
)
|
59 |
+
step = gr.Slider(minimum=0, maximum=20, step=1, value=1, label="Step")
|
60 |
+
|
61 |
+
btn = gr.Button(value="Submit")
|
62 |
+
|
63 |
+
btn.click(
|
64 |
+
recursive_feature_elimination,
|
65 |
+
inputs=[n_features_to_select, step],
|
66 |
+
outputs=gr.Plot(
|
67 |
+
label="Recursive feature elimination of pixels in digit classification"
|
68 |
+
),
|
69 |
+
) #
|
70 |
+
|
71 |
+
gr.Markdown(
|
72 |
+
" Plot shows the importance of each pixel in the classification of the digits. <br>"
|
73 |
+
)
|
74 |
+
|
75 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
scikit-learn==1.2.1
|