EduardoPacheco commited on
Commit
c4b39af
1 Parent(s): 924f848

Changed plot look

Browse files
Files changed (2) hide show
  1. app.py +2 -4
  2. utils.py +3 -3
app.py CHANGED
@@ -43,9 +43,6 @@ def app_fn(n_random_features: int, test_size: float, random_state_val: int):
43
 
44
  return fig_bin, fig_multi
45
 
46
- def app_fn_multi():
47
- ...
48
-
49
 
50
  title = "Precision-Recall Curves"
51
  with gr.Blocks(title=title) as demo:
@@ -68,7 +65,7 @@ with gr.Blocks(title=title) as demo:
68
 
69
  with gr.Row():
70
  n_random_features = gr.inputs.Slider(0, 1000, 50, 800,label="Number of Random Features")
71
- test_size = gr.inputs.Slider(0.1, 0.9, 0.3, 0.5, label="Test Size")
72
  random_state_val = gr.inputs.Slider(0, 100, 5, 0,label="Random State")
73
 
74
 
@@ -79,6 +76,7 @@ with gr.Blocks(title=title) as demo:
79
  n_random_features.change(fn=app_fn, inputs=[n_random_features, test_size, random_state_val], outputs=[fig_bin, fig_multi])
80
  test_size.change(fn=app_fn, inputs=[n_random_features, test_size, random_state_val], outputs=[fig_bin, fig_multi])
81
  random_state_val.change(fn=app_fn, inputs=[n_random_features, test_size, random_state_val], outputs=[fig_bin, fig_multi])
 
82
  demo.load(fn=app_fn, inputs=[n_random_features, test_size, random_state_val], outputs=[fig_bin, fig_multi])
83
 
84
  demo.launch()
 
43
 
44
  return fig_bin, fig_multi
45
 
 
 
 
46
 
47
  title = "Precision-Recall Curves"
48
  with gr.Blocks(title=title) as demo:
 
65
 
66
  with gr.Row():
67
  n_random_features = gr.inputs.Slider(0, 1000, 50, 800,label="Number of Random Features")
68
+ test_size = gr.inputs.Slider(0.1, 0.9, 0.01, 0.5, label="Test Size")
69
  random_state_val = gr.inputs.Slider(0, 100, 5, 0,label="Random State")
70
 
71
 
 
76
  n_random_features.change(fn=app_fn, inputs=[n_random_features, test_size, random_state_val], outputs=[fig_bin, fig_multi])
77
  test_size.change(fn=app_fn, inputs=[n_random_features, test_size, random_state_val], outputs=[fig_bin, fig_multi])
78
  random_state_val.change(fn=app_fn, inputs=[n_random_features, test_size, random_state_val], outputs=[fig_bin, fig_multi])
79
+
80
  demo.load(fn=app_fn, inputs=[n_random_features, test_size, random_state_val], outputs=[fig_bin, fig_multi])
81
 
82
  demo.launch()
utils.py CHANGED
@@ -30,9 +30,9 @@ def plot_multi_label_pr_curve(clf, X_test: np.ndarray, Y_test: np.ndarray):
30
 
31
  for color, key in zip(colors, keys):
32
  if key=="micro":
33
- name = f"Micro-average Precision-Recall (AP={average_precision[key]:.2f})"
34
  else:
35
- name = f"Precision-recall for class {key} (AP={average_precision[key]:.2f})"
36
  fig.add_trace(
37
  go.Scatter(
38
  x=recall[key],
@@ -66,7 +66,7 @@ def plot_multi_label_pr_curve(clf, X_test: np.ndarray, Y_test: np.ndarray):
66
  fig.update_layout(
67
  title='Extension of Precision-Recall Curve to Multi-Class',
68
  xaxis_title='Recall',
69
- yaxis_title='Precision',
70
  )
71
 
72
  return fig
 
30
 
31
  for color, key in zip(colors, keys):
32
  if key=="micro":
33
+ name = f"Micro-average(AP={average_precision[key]:.2f})"
34
  else:
35
+ name = f"Class {key} (AP={average_precision[key]:.2f})"
36
  fig.add_trace(
37
  go.Scatter(
38
  x=recall[key],
 
66
  fig.update_layout(
67
  title='Extension of Precision-Recall Curve to Multi-Class',
68
  xaxis_title='Recall',
69
+ yaxis_title='Precision'
70
  )
71
 
72
  return fig