Spaces:
Sleeping
Sleeping
import numpy as np | |
import gradio as gr | |
from sklearn.svm import LinearSVC | |
from sklearn.datasets import load_iris | |
from sklearn.pipeline import make_pipeline | |
from sklearn.multiclass import OneVsRestClassifier | |
from sklearn.model_selection import train_test_split | |
from sklearn.preprocessing import label_binarize, StandardScaler | |
import utils | |
def app_fn(n_random_features: int, test_size: float, random_state_val: int): | |
X, y = load_iris(return_X_y=True) | |
# Add noisy features | |
random_state = np.random.RandomState(random_state_val) | |
n_samples, n_features = X.shape | |
X = np.concatenate([X, random_state.randn(n_samples, n_random_features)], axis=1) | |
# Solving Binary Problem | |
X_train, X_test, y_train, y_test = train_test_split( | |
X[y < 2], y[y < 2], test_size=test_size, random_state=random_state | |
) | |
clf_bin = make_pipeline(StandardScaler(), LinearSVC(random_state=random_state)) | |
clf_bin.fit(X_train, y_train) | |
fig_bin = utils.plot_binary_pr_curve(clf_bin, X_test, y_test) | |
# Solving Multi-Label Problem | |
Y = label_binarize(y, classes=[0, 1, 2]) | |
X_train_multi, X_test_multi, Y_train, Y_test = train_test_split( | |
X, Y, test_size=test_size, random_state=random_state | |
) | |
clf = OneVsRestClassifier( | |
make_pipeline(StandardScaler(), LinearSVC(random_state=random_state)) | |
) | |
clf.fit(X_train_multi, Y_train) | |
fig_multi = utils.plot_multi_label_pr_curve(clf, X_test_multi, Y_test) | |
return fig_bin, fig_multi | |
title = "Precision-Recall Curves" | |
with gr.Blocks(title=title) as demo: | |
gr.Markdown(f"# {title}") | |
gr.Markdown( | |
""" | |
This demo shows the precision-recall curves on the Iris dataset \ | |
using a Linear SVM classifier + StandardScaler. \ | |
Noise is added to the dataset to make the problem more challenging. \ | |
The dataset is split into train and test sets. \ | |
The model is trained on the train set and evaluated on the test set. \ | |
Two separate problems are solved: | |
- Binary classification: class 0 vs class 1 | |
- Multi-label classification: class 0 vs class 1 vs class 2 | |
See the scikit-learn example [here](https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html#sphx-glr-auto-examples-model-selection-plot-precision-recall-py). | |
""" | |
) | |
with gr.Row(): | |
n_random_features = gr.inputs.Slider(0, 1000, 50, 800,label="Number of Random Features") | |
test_size = gr.inputs.Slider(0.1, 0.9, 0.01, 0.5, label="Test Size") | |
random_state_val = gr.inputs.Slider(0, 100, 5, 0,label="Random State") | |
with gr.Row(): | |
fig_bin = gr.Plot(label="Binary PR Curve") | |
fig_multi = gr.Plot(label="Multi-Label PR Curve") | |
n_random_features.change(fn=app_fn, inputs=[n_random_features, test_size, random_state_val], outputs=[fig_bin, fig_multi]) | |
test_size.change(fn=app_fn, inputs=[n_random_features, test_size, random_state_val], outputs=[fig_bin, fig_multi]) | |
random_state_val.change(fn=app_fn, inputs=[n_random_features, test_size, random_state_val], outputs=[fig_bin, fig_multi]) | |
demo.load(fn=app_fn, inputs=[n_random_features, test_size, random_state_val], outputs=[fig_bin, fig_multi]) | |
demo.launch() | |