|
from __future__ import annotations |
|
|
|
import numpy as np |
|
import gradio as gr |
|
from sklearn.svm import SVC |
|
import plotly.graph_objects as go |
|
from sklearn.datasets import load_digits |
|
from sklearn.model_selection import validation_curve |
|
|
|
def plot_validation_curve(x: np.array, ys: list[np.array], yerros: list[np.array], names: list[str], colors: list[str], log_x: bool=True, title: str=""): |
|
fig = go.Figure() |
|
|
|
for y, yerror, name, color in zip(ys, yerros, names, colors): |
|
y_upper = y + yerror |
|
y_lower = y - yerror |
|
|
|
fig.add_trace( |
|
go.Scatter( |
|
x=x, |
|
y=np.round(y, 3), |
|
name=name, |
|
line_color=color |
|
) |
|
) |
|
|
|
fig.add_trace( |
|
go.Scatter( |
|
x=x.tolist()+x[::-1].tolist(), |
|
y=y_upper.tolist()+y_lower[::-1].tolist(), |
|
fill='toself', |
|
fillcolor=color, |
|
line=dict(color=color), |
|
hoverinfo="skip", |
|
showlegend=False, |
|
opacity=0.2 |
|
) |
|
) |
|
|
|
if log_x: |
|
fig.update_xaxes(type="log") |
|
|
|
fig.update_layout( |
|
title=title, |
|
xaxis_title="Hyperparameter", |
|
yaxis_title="Accuracy", |
|
hovermode="x unified", |
|
) |
|
|
|
return fig |
|
|
|
|
|
|
|
def app_fn(n_points: int, param_name: str): |
|
X, y = load_digits(return_X_y=True) |
|
subset_mask = np.isin(y, [1, 2]) |
|
X, y = X[subset_mask], y[subset_mask] |
|
|
|
if param_name=="gamma": |
|
param_range = np.logspace(-6, -1, n_points) |
|
log_x = True |
|
elif param_name=="C": |
|
param_range = np.logspace(-2, 0, n_points) |
|
log_x = True |
|
elif param_name=="kernel": |
|
param_range = np.array(["rbf", "linear", "poly", "sigmoid"]) |
|
log_x = False |
|
|
|
train_scores, test_scores = validation_curve( |
|
SVC(), |
|
X, |
|
y, |
|
param_name=param_name, |
|
param_range=param_range, |
|
scoring="accuracy", |
|
n_jobs=-1, |
|
) |
|
|
|
train_scores_mean = np.mean(train_scores, axis=1) |
|
train_scores_std = np.std(train_scores, axis=1) |
|
test_scores_mean = np.mean(test_scores, axis=1) |
|
test_scores_std = np.std(test_scores, axis=1) |
|
|
|
fig = plot_validation_curve( |
|
param_range, |
|
[train_scores_mean, test_scores_mean], |
|
[train_scores_std, test_scores_std], |
|
["Training score", "Cross-validation score"], |
|
["orange", "navy"], |
|
title=f"Validation Curve with SVM for {param_name} Hyperparameter", |
|
log_x=log_x |
|
) |
|
|
|
return fig |
|
|
|
title = "Plotting Validation Curve" |
|
with gr.Blocks(title=title) as demo: |
|
gr.Markdown(f"# {title}") |
|
gr.Markdown( |
|
""" |
|
#### This example shows the usage of a validation curve to understand \ |
|
how the performance of a model, SVM in this case, changes with varying hyperparameters. \ |
|
The dataset used was the [digits dataset](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.load_digits.html#sklearn.datasets.load_digits) \ |
|
from scikit-learn. The hyperparameter varied was gamma. \ |
|
|
|
[Original Example](https://scikit-learn.org/stable/auto_examples/model_selection/plot_validation_curve.html#sphx-glr-auto-examples-model-selection-plot-validation-curve-py) |
|
""" |
|
) |
|
with gr.Row(): |
|
n_points = gr.inputs.Slider(5, 100, 5, 5,label="Number of points") |
|
param_name = gr.inputs.Dropdown(["gamma", "C", "kernel"], label="Hyperparameter", default="gamma") |
|
|
|
|
|
fig = gr.Plot(label="Validation Curve") |
|
|
|
n_points.release(fn=app_fn, inputs=[n_points, param_name], outputs=[fig]) |
|
param_name.change(fn=app_fn, inputs=[n_points, param_name], outputs=[fig]) |
|
|
|
|
|
|
|
|
|
|
|
|
|
demo.load(fn=app_fn, inputs=[n_points, param_name], outputs=[fig]) |
|
|
|
demo.launch() |