sulpha commited on
Commit
83750f3
1 Parent(s): 31bfb1f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -3
app.py CHANGED
@@ -97,20 +97,31 @@ title = "Plot multi-class SGD on the iris dataset"
97
 
98
  model_card = f"""
99
  ## Description
100
- Plot decision surface of multi-class SGD on iris dataset.
101
- The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines.
 
 
 
 
 
102
  ## Dataset
103
  [Iris Dataset](https://en.wikipedia.org/wiki/Iris_flower_data_set)
 
 
 
 
 
104
  """
105
 
106
  with gr.Blocks(title=title) as demo:
107
  gr.Markdown('''
108
  <div>
109
- <h1 style='text-align: center'>⚒ Plot multi-class SGD on iris dataset 🛠</h1>
110
  </div>
111
  ''')
112
 
113
  gr.Markdown(model_card)
 
114
  d0 = gr.Slider(0.001,5,step=0.001,value=0.001,label='alpha')
115
  d1 = gr.Slider(1,1001,step=10,value=100,label='max_iter')
116
  d2 = gr.Checkbox(value=True,label='Standardize')
 
97
 
98
  model_card = f"""
99
  ## Description
100
+ This interactive demo is based on the [Plot multi-class SGD on the iris dataset](https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_iris.html#sphx-glr-auto-examples-linear-model-plot-sgd-iris-py) example from the popular [scikit-learn](https://scikit-learn.org/stable/) library, which is a widely-used library for machine learning in Python.
101
+ This demo plots the decision surface of multi-class SGD on the iris dataset. The hyperplanes corresponding to the three one-versus-all (OVA) classifiers are represented by the dashed lines.
102
+ You can play with the following hyperparameters:
103
+ `alpha` is a constant that multiplies the regularization term. The higher the value, the stronger the regularization.
104
+ `max_iter` is the maximum number of passes over the training data (aka epochs).
105
+ `Standardise` centers the dataset
106
+
107
  ## Dataset
108
  [Iris Dataset](https://en.wikipedia.org/wiki/Iris_flower_data_set)
109
+
110
+ ## Model
111
+ currentmodule: [sklearn.linear_model](https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear_model)
112
+ class:`SGDClassifier` is the estimator used in this example.
113
+
114
  """
115
 
116
  with gr.Blocks(title=title) as demo:
117
  gr.Markdown('''
118
  <div>
119
+ <h1 style='text-align: center'>Plot multi-class SGD on iris dataset</h1>
120
  </div>
121
  ''')
122
 
123
  gr.Markdown(model_card)
124
+ gr.Markdown("Author: <a href=\"https://huggingface.co/sulpha\">sulpha</a>")
125
  d0 = gr.Slider(0.001,5,step=0.001,value=0.001,label='alpha')
126
  d1 = gr.Slider(1,1001,step=10,value=100,label='max_iter')
127
  d2 = gr.Checkbox(value=True,label='Standardize')