Spaces:
Sleeping
Sleeping
import gradio as gr | |
import time | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from scipy.linalg import toeplitz, cholesky | |
from sklearn.covariance import LedoitWolf, OAS | |
np.random.seed(0) | |
def plot_mse(min_slider_samples_range,max_slider_samples_range): | |
# plot MSE | |
print("inside plot_mse") | |
plt.clf() | |
plt.subplot(2, 1, 1) | |
plt.errorbar( | |
slider_samples_range, | |
lw_mse.mean(1), | |
yerr=lw_mse.std(1), | |
label="Ledoit-Wolf", | |
color="navy", | |
lw=2, | |
) | |
plt.errorbar( | |
slider_samples_range, | |
oa_mse.mean(1), | |
yerr=oa_mse.std(1), | |
label="OAS", | |
color="darkorange", | |
lw=2, | |
) | |
plt.ylabel("Squared error") | |
plt.legend(loc="upper right") | |
plt.title("Comparison of covariance estimators") | |
plt.xlim(5, 31) | |
print("outside plot_mse") | |
return plt | |
def plot_shrinkage(min_slider_samples_range,max_slider_samples_range): | |
# plot shrinkage coefficient | |
print("inside plot_shrink") | |
plt.clf() | |
plt.subplot(2, 1, 2) | |
plt.errorbar( | |
slider_samples_range, | |
lw_shrinkage.mean(1), | |
yerr=lw_shrinkage.std(1), | |
label="Ledoit-Wolf", | |
color="navy", | |
lw=2, | |
) | |
plt.errorbar( | |
slider_samples_range, | |
oa_shrinkage.mean(1), | |
yerr=oa_shrinkage.std(1), | |
label="OAS", | |
color="darkorange", | |
lw=2, | |
) | |
plt.xlabel("n_samples") | |
plt.ylabel("Shrinkage") | |
plt.legend(loc="lower right") | |
plt.ylim(plt.ylim()[0], 1.0 + (plt.ylim()[1] - plt.ylim()[0]) / 10.0) | |
plt.xlim(5, 31) | |
print("outside plot_shrink") | |
# plt.show() | |
return plt | |
title = "Ledoit-Wolf vs OAS estimation" | |
with gr.Blocks(title=title, theme=gr.themes.Default(font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"])) as demo: | |
gr.Markdown(f"# {title}") | |
gr.Markdown( | |
""" | |
The usual covariance maximum likelihood estimate can be regularized using shrinkage. Ledoit and Wolf proposed a close formula to compute the asymptotically optimal shrinkage parameter (minimizing a MSE criterion), yielding the Ledoit-Wolf covariance estimate. | |
Chen et al. proposed an improvement of the Ledoit-Wolf shrinkage parameter, the OAS coefficient, whose convergence is significantly better under the assumption that the data are Gaussian. | |
This example, inspired from Chen’s publication [1], shows a comparison of the estimated MSE of the LW and OAS methods, using Gaussian distributed data. | |
[1] “Shrinkage Algorithms for MMSE Covariance Estimation” Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010. | |
""") | |
n_features = 100 | |
min_slider_samples_range = gr.Slider(6, 31, value=6, step=1, label="min_samples_range", info="Choose between 6 and 31") | |
max_slider_samples_range = gr.Slider(6, 31, value=31, step=1, label="max_samples_range", info="Choose between 6 and 31") | |
print("min_slider_samples_range=",min_slider_samples_range.value) | |
print("max_slider_samples_range=",max_slider_samples_range.value) | |
low = min_slider_samples_range.value | |
high = max_slider_samples_range.value | |
###### initialisation code | |
slider_samples_range =np.arange(low, high,1) | |
n_features = 100 | |
repeat = 100 | |
lw_mse = np.zeros((slider_samples_range.size, repeat)) | |
oa_mse = np.zeros((slider_samples_range.size, repeat)) | |
lw_shrinkage = np.zeros((slider_samples_range.size, repeat)) | |
oa_shrinkage = np.zeros((slider_samples_range.size, repeat)) | |
r = 0.1 | |
real_cov = toeplitz(r ** np.arange(n_features)) | |
coloring_matrix = cholesky(real_cov) | |
for i, n_samples in enumerate(slider_samples_range): | |
for j in range(repeat): | |
X = np.dot(np.random.normal(size=(n_samples, n_features)), coloring_matrix.T) | |
lw = LedoitWolf(store_precision=False, assume_centered=True) | |
lw.fit(X) | |
lw_mse[i, j] = lw.error_norm(real_cov, scaling=False) | |
lw_shrinkage[i, j] = lw.shrinkage_ | |
oa = OAS(store_precision=False, assume_centered=True) | |
oa.fit(X) | |
oa_mse[i, j] = oa.error_norm(real_cov, scaling=False) | |
oa_shrinkage[i, j] = oa.shrinkage_ | |
gr.Markdown(" **[Demo is based on sklearn docs](https://scikit-learn.org/stable/auto_examples/covariance/plot_lw_vs_oas.html)**") | |
gr.Markdown("Changing the min_samples_range values and the MSE plot changes") | |
gr.Markdown("Changing the max_samples_range values and the Shrinkage plot changes") | |
gr.Label(value="Comparison of Covariance Estimators") | |
min_slider_samples_range.change(plot_mse, inputs=[min_slider_samples_range,max_slider_samples_range], outputs= gr.Plot() ) | |
max_slider_samples_range.change(plot_shrinkage, inputs=[min_slider_samples_range,max_slider_samples_range], outputs= gr.Plot() ) | |
demo.launch() | |