Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import matplotlib.pyplot as plt
|
4 |
+
|
5 |
+
from sklearn.datasets import load_digits
|
6 |
+
from sklearn.neighbors import KernelDensity
|
7 |
+
from sklearn.decomposition import PCA
|
8 |
+
from sklearn.model_selection import GridSearchCV
|
9 |
+
|
10 |
+
def generate_digits(bandwidth, num_samples):
|
11 |
+
|
12 |
+
# convert bandwidth to integer
|
13 |
+
bandwidth = int(bandwidth)
|
14 |
+
|
15 |
+
# convert num_samples to integer
|
16 |
+
num_samples = int(num_samples)
|
17 |
+
|
18 |
+
# load the data
|
19 |
+
digits = load_digits()
|
20 |
+
|
21 |
+
# project the 64-dimensional data to a lower dimension
|
22 |
+
pca = PCA(n_components=15, whiten=False)
|
23 |
+
data = pca.fit_transform(digits.data)
|
24 |
+
|
25 |
+
# use grid search cross-validation to optimize the bandwidth
|
26 |
+
params = {"bandwidth": np.logspace(-1, 1, 20)}
|
27 |
+
grid = GridSearchCV(KernelDensity(), params)
|
28 |
+
grid.fit(data)
|
29 |
+
|
30 |
+
# use the specified bandwidth to compute the kernel density estimate
|
31 |
+
kde = KernelDensity(bandwidth=bandwidth)
|
32 |
+
kde.fit(data)
|
33 |
+
|
34 |
+
# sample new points from the data
|
35 |
+
new_data = kde.sample(num_samples, random_state=0)
|
36 |
+
new_data = pca.inverse_transform(new_data)
|
37 |
+
|
38 |
+
# reshape the data into a 4x11 grid
|
39 |
+
new_data = new_data.reshape((num_samples, 64))
|
40 |
+
real_data = digits.data[:num_samples].reshape((num_samples, 64))
|
41 |
+
|
42 |
+
# create the plot
|
43 |
+
fig, ax = plt.subplots(9, 11, subplot_kw=dict(xticks=[], yticks=[]))
|
44 |
+
for j in range(11):
|
45 |
+
ax[4, j].set_visible(False)
|
46 |
+
for i in range(4):
|
47 |
+
index = i * 11 + j # Calculate the correct index
|
48 |
+
if index < num_samples:
|
49 |
+
im = ax[i, j].imshow(
|
50 |
+
real_data[index].reshape((8, 8)), cmap=plt.cm.binary, interpolation="nearest"
|
51 |
+
)
|
52 |
+
im.set_clim(0, 16)
|
53 |
+
im = ax[i + 5, j].imshow(
|
54 |
+
new_data[index].reshape((8, 8)), cmap=plt.cm.binary, interpolation="nearest"
|
55 |
+
)
|
56 |
+
im.set_clim(0, 16)
|
57 |
+
else:
|
58 |
+
ax[i, j].axis("off")
|
59 |
+
ax[i + 5, j].axis("off")
|
60 |
+
|
61 |
+
ax[0, 5].set_title("Selection from the input data")
|
62 |
+
ax[5, 5].set_title('"New" digits drawn from the kernel density model')
|
63 |
+
|
64 |
+
|
65 |
+
# save the plot to a file
|
66 |
+
plt.savefig("digits_plot.png")
|
67 |
+
|
68 |
+
# return the path to the generated plot
|
69 |
+
return "digits_plot.png"
|
70 |
+
|
71 |
+
# create the Gradio interface
|
72 |
+
inputs = [
|
73 |
+
gr.inputs.Slider(minimum=1, maximum=10, step=1, label="Bandwidth"),
|
74 |
+
gr.inputs.Number(default=44, label="Number of Samples")
|
75 |
+
]
|
76 |
+
output = gr.outputs.Image(type="pil")
|
77 |
+
|
78 |
+
title = "Kernel Density Estimation"
|
79 |
+
description = "This example shows how kernel density estimation (KDE), a powerful non-parametric density estimation technique, can be used to learn a generative model for a dataset. With this generative model in place, new samples can be drawn. These new samples reflect the underlying model of the data. See the original scikit-learn example here: https://scikit-learn.org/stable/auto_examples/neighbors/plot_digits_kde_sampling.html"
|
80 |
+
examples = [
|
81 |
+
[1, 44], # Changed to integer values
|
82 |
+
[8, 22], # Changed to integer values
|
83 |
+
[7, 51] # Changed to integer values
|
84 |
+
]
|
85 |
+
|
86 |
+
gr.Interface(generate_digits, inputs, output, title=title, description=description, examples=examples).launch()
|