Upload app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
+
from sklearn.linear_model import MultiTaskLasso, Lasso
|
| 4 |
+
import gradio as gr
|
| 5 |
+
|
| 6 |
+
rng = np.random.RandomState(42)
|
| 7 |
+
|
| 8 |
+
# Generate some 2D coefficients with sine waves with random frequency and phase
|
| 9 |
+
def make_plot(n_samples, n_features, n_tasks, n_relevant_features, alpha):
|
| 10 |
+
|
| 11 |
+
coef = np.zeros((n_tasks, n_features))
|
| 12 |
+
times = np.linspace(0, 2 * np.pi, n_tasks)
|
| 13 |
+
for k in range(n_relevant_features):
|
| 14 |
+
coef[:, k] = np.sin((1.0 + rng.randn(1)) * times + 3 * rng.randn(1))
|
| 15 |
+
|
| 16 |
+
X = rng.randn(n_samples, n_features)
|
| 17 |
+
Y = np.dot(X, coef.T) + rng.randn(n_samples, n_tasks)
|
| 18 |
+
|
| 19 |
+
coef_lasso_ = np.array([Lasso(alpha=0.5).fit(X, y).coef_ for y in Y.T])
|
| 20 |
+
coef_multi_task_lasso_ = MultiTaskLasso(alpha=alpha).fit(X, Y).coef_
|
| 21 |
+
|
| 22 |
+
fig = plt.figure(figsize=(8, 5))
|
| 23 |
+
|
| 24 |
+
feature_to_plot = 0
|
| 25 |
+
fig = plt.figure()
|
| 26 |
+
lw = 2
|
| 27 |
+
plt.plot(coef[:, feature_to_plot], color="seagreen", linewidth=lw, label="Ground truth")
|
| 28 |
+
plt.plot(
|
| 29 |
+
coef_lasso_[:, feature_to_plot], color="cornflowerblue", linewidth=lw, label="Lasso"
|
| 30 |
+
)
|
| 31 |
+
plt.plot(
|
| 32 |
+
coef_multi_task_lasso_[:, feature_to_plot],
|
| 33 |
+
color="gold",
|
| 34 |
+
linewidth=lw,
|
| 35 |
+
label="MultiTaskLasso",
|
| 36 |
+
)
|
| 37 |
+
plt.legend(loc='upper center', bbox_to_anchor=(0.5, -0.05),
|
| 38 |
+
ncol=3, fancybox=True, shadow=True)
|
| 39 |
+
plt.axis("tight")
|
| 40 |
+
plt.ylim([-1.1, 1.1])
|
| 41 |
+
fig.suptitle("Lasso, MultiTaskLasso and Ground truth time series")
|
| 42 |
+
return fig
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
model_card=f"""
|
| 46 |
+
## Description
|
| 47 |
+
Multi-task Lasso allows us to jointly fit multiple regression problems by enforcing the selected
|
| 48 |
+
features to be the same across tasks. This example simulates sequential measurement. Each task
|
| 49 |
+
is a time instant, and the relevant features, while being the same, vary in amplitude over time.
|
| 50 |
+
Multi-task lasso imposes that features that are selected at one time point are selected
|
| 51 |
+
for all time points. This makes feature selection more stable than by regular Lasso.
|
| 52 |
+
## Model
|
| 53 |
+
currentmodule: sklearn.linear_model
|
| 54 |
+
class:`Lasso` and class: `MultiTaskLasso` are used in this example.
|
| 55 |
+
Plots represent Lasso, MultiTaskLasso and Ground truth time series
|
| 56 |
+
"""
|
| 57 |
+
|
| 58 |
+
with gr.Blocks() as demo:
|
| 59 |
+
|
| 60 |
+
gr.Markdown('''
|
| 61 |
+
<div>
|
| 62 |
+
<h1 style='text-align: center'> Joint feature selection with multi-task Lasso </h1>
|
| 63 |
+
</div>
|
| 64 |
+
''')
|
| 65 |
+
gr.Markdown(model_card)
|
| 66 |
+
gr.Markdown("Original example Author: Alexandre Gramfort <alexandre.gramfort@inria.fr>")
|
| 67 |
+
gr.Markdown(
|
| 68 |
+
"Iterative conversion by: <a href=\"https://github.com/DeaMariaLeon\">Dea María Léon</a>"
|
| 69 |
+
)
|
| 70 |
+
n_samples = gr.Slider(50,500,value=100,step=50,label='Select number of samples')
|
| 71 |
+
n_features = gr.Slider(5,50,value=30,step=5,label='Select number of features')
|
| 72 |
+
n_tasks = gr.Slider(5,50,value=40,step=5,label='Select number of tasks')
|
| 73 |
+
n_relevant_features = gr.Slider(1,10,value=5,step=1,label='Select number of relevant_features')
|
| 74 |
+
with gr.Column():
|
| 75 |
+
with gr.Tab('Select Alpha Range'):
|
| 76 |
+
alpha = gr.Slider(0,10,value=1.0,step=0.5,label='alpha')
|
| 77 |
+
|
| 78 |
+
btn = gr.Button(value = 'Submit')
|
| 79 |
+
|
| 80 |
+
btn.click(make_plot,inputs=[n_samples,n_features, n_tasks, n_relevant_features, alpha],outputs=[gr.Plot()])
|
| 81 |
+
|
| 82 |
+
demo.launch()
|