vumichien commited on
Commit
3f814f7
·
1 Parent(s): 789e2f9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +3 -3
app.py CHANGED
@@ -90,7 +90,8 @@ def do_train(n_samples, n_new_data):
90
  X_new, y_new = make_blobs(
91
  n_samples=N_NEW_DATA, centers=[(-7, -1), (-2, 4), (3, 6)], random_state=RANDOM_STATE
92
  )
93
-
 
94
  fig2, axes2 = plt.subplots()
95
  axes2.scatter(X[:, 0], X[:, 1], c=cluster_labels, alpha=0.5, edgecolor="k")
96
  axes2.scatter(X_new[:, 0], X_new[:, 1], c="black", alpha=1, edgecolor="k")
@@ -105,7 +106,7 @@ def do_train(n_samples, n_new_data):
105
  probable_clusters = inductive_learner.predict(X_new)
106
  fig3, axes3 = plt.subplots()
107
  disp = DecisionBoundaryDisplay.from_estimator(
108
- inductive_learner, X, response_method="predict", alpha=0.4, ax=axes3
109
  )
110
  disp.ax_.set_title("Classify unknown instances with known clusters")
111
  disp.ax_.scatter(X[:, 0], X[:, 1], c=cluster_labels, alpha=0.5, edgecolor="k")
@@ -114,7 +115,6 @@ def do_train(n_samples, n_new_data):
114
 
115
  # recomputing clustering and classify boundary
116
  t2 = time.time()
117
- X_all = np.concatenate((X, X_new), axis=0)
118
  clusterer = AgglomerativeClustering(n_clusters=3)
119
  y = clusterer.fit_predict(X_all)
120
  classifier = RandomForestClassifier(random_state=RANDOM_STATE).fit(X_all, y)
 
90
  X_new, y_new = make_blobs(
91
  n_samples=N_NEW_DATA, centers=[(-7, -1), (-2, 4), (3, 6)], random_state=RANDOM_STATE
92
  )
93
+ X_all = np.concatenate((X, X_new), axis=0)
94
+
95
  fig2, axes2 = plt.subplots()
96
  axes2.scatter(X[:, 0], X[:, 1], c=cluster_labels, alpha=0.5, edgecolor="k")
97
  axes2.scatter(X_new[:, 0], X_new[:, 1], c="black", alpha=1, edgecolor="k")
 
106
  probable_clusters = inductive_learner.predict(X_new)
107
  fig3, axes3 = plt.subplots()
108
  disp = DecisionBoundaryDisplay.from_estimator(
109
+ inductive_learner, X_all, response_method="predict", alpha=0.4, ax=axes3
110
  )
111
  disp.ax_.set_title("Classify unknown instances with known clusters")
112
  disp.ax_.scatter(X[:, 0], X[:, 1], c=cluster_labels, alpha=0.5, edgecolor="k")
 
115
 
116
  # recomputing clustering and classify boundary
117
  t2 = time.time()
 
118
  clusterer = AgglomerativeClustering(n_clusters=3)
119
  y = clusterer.fit_predict(X_all)
120
  classifier = RandomForestClassifier(random_state=RANDOM_STATE).fit(X_all, y)