Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
from sklearn import datasets
|
4 |
+
from sklearn.gaussian_process import GaussianProcessClassifier
|
5 |
+
from sklearn.gaussian_process.kernels import RBF
|
6 |
+
import gradio as gr
|
7 |
+
|
8 |
+
def plot_decision_boundary(kernel_type):
|
9 |
+
iris = datasets.load_iris()
|
10 |
+
X = iris.data[:, :2] # we only take the first two features.
|
11 |
+
y = np.array(iris.target, dtype=int)
|
12 |
+
|
13 |
+
h = 0.02 # step size in the mesh
|
14 |
+
|
15 |
+
if kernel_type == "isotropic":
|
16 |
+
kernel = 1.0 * RBF([1.0])
|
17 |
+
clf = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
18 |
+
elif kernel_type == "anisotropic":
|
19 |
+
kernel = 1.0 * RBF([1.0, 1.0])
|
20 |
+
clf = GaussianProcessClassifier(kernel=kernel).fit(X, y)
|
21 |
+
else:
|
22 |
+
return None
|
23 |
+
|
24 |
+
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
|
25 |
+
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
|
26 |
+
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
|
27 |
+
|
28 |
+
Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])
|
29 |
+
Z = Z.reshape((xx.shape[0], xx.shape[1], 3))
|
30 |
+
|
31 |
+
plt.figure(figsize=(7, 5))
|
32 |
+
plt.imshow(Z, extent=(x_min, x_max, y_min, y_max), origin="lower")
|
33 |
+
plt.scatter(X[:, 0], X[:, 1], c=np.array(["r", "g", "b"])[y], edgecolors=(0, 0, 0))
|
34 |
+
plt.xlabel("Sepal length")
|
35 |
+
plt.ylabel("Sepal width")
|
36 |
+
plt.xlim(xx.min(), xx.max())
|
37 |
+
plt.ylim(yy.min(), yy.max())
|
38 |
+
plt.xticks(())
|
39 |
+
plt.yticks(())
|
40 |
+
plt.title("%s, LML: %.3f" % (kernel_type.capitalize(), clf.log_marginal_likelihood(clf.kernel_.theta)))
|
41 |
+
plt.tight_layout()
|
42 |
+
return plt
|
43 |
+
|
44 |
+
kernel_select = gr.inputs.Radio(["isotropic", "anisotropic"], label="Kernel Type")
|
45 |
+
gr_interface = gr.Interface(fn=plot_decision_boundary, inputs=kernel_select, outputs="plot", title="Gaussian Process Classification on Iris Dataset", description="This example illustrates the predicted probability of GPC for an isotropic and anisotropic RBF kernel on a two-dimensional version for the iris-dataset. The anisotropic RBF kernel obtains slightly higher log-marginal-likelihood by assigning different length-scales to the two feature dimensions. See the original example at https://scikit-learn.org/stable/auto_examples/gaussian_process/plot_gpc_iris.html")
|
46 |
+
gr_interface.launch()
|