caliex commited on
Commit
75460db
·
1 Parent(s): 2200ffe

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +110 -0
app.py ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import matplotlib.pyplot as plt
3
+ from sklearn.datasets import make_classification
4
+ from sklearn.model_selection import train_test_split
5
+ from sklearn.preprocessing import StandardScaler
6
+ from sklearn.ensemble import RandomForestClassifier
7
+ from sklearn.pipeline import make_pipeline
8
+ from sklearn.svm import LinearSVC
9
+ from sklearn.metrics import DetCurveDisplay, RocCurveDisplay
10
+
11
+ def generate_synthetic_data(n_samples, n_features, n_redundant, n_informative, random_state, n_clusters_per_class):
12
+ X, y = make_classification(
13
+ n_samples=n_samples,
14
+ n_features=n_features,
15
+ n_redundant=n_redundant,
16
+ n_informative=n_informative,
17
+ random_state=random_state,
18
+ n_clusters_per_class=n_clusters_per_class,
19
+ )
20
+ return X, y
21
+
22
+ def plot_roc_det_curves(classifier_names, svm_c, rf_max_depth, rf_n_estimators, rf_max_features,
23
+ n_samples, n_features, n_redundant, n_informative, random_state, n_clusters_per_class):
24
+ X, y = generate_synthetic_data(n_samples, n_features, n_redundant, n_informative, random_state, n_clusters_per_class)
25
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.4, random_state=0)
26
+
27
+ classifiers = {
28
+ "Linear SVM": make_pipeline(StandardScaler(), LinearSVC(C=svm_c)),
29
+ "Random Forest": RandomForestClassifier(
30
+ max_depth=rf_max_depth, n_estimators=rf_n_estimators, max_features=rf_max_features
31
+ ),
32
+ }
33
+
34
+ fig, [ax_roc, ax_det] = plt.subplots(1, 2, figsize=(11, 5))
35
+
36
+ for classifier_name in classifier_names:
37
+ clf = classifiers[classifier_name]
38
+ clf.fit(X_train, y_train)
39
+ RocCurveDisplay.from_estimator(clf, X_test, y_test, ax=ax_roc, name=classifier_name)
40
+ DetCurveDisplay.from_estimator(clf, X_test, y_test, ax=ax_det, name=classifier_name)
41
+
42
+ ax_roc.set_title("Receiver Operating Characteristic (ROC) curves")
43
+ ax_det.set_title("Detection Error Tradeoff (DET) curves")
44
+
45
+ ax_roc.grid(linestyle="--")
46
+ ax_det.grid(linestyle="--")
47
+
48
+ plt.legend()
49
+ plt.tight_layout()
50
+
51
+ return plt
52
+
53
+ parameters = [
54
+ gr.inputs.CheckboxGroup(["Linear SVM", "Random Forest"], label="Classifiers"),
55
+ gr.inputs.Slider(0.001, 0.1, step=0.001, default=0.025, label="Linear SVM C"),
56
+ gr.inputs.Slider(1, 10, step=1, default=5, label="Random Forest Max Depth"),
57
+ gr.inputs.Slider(1, 20, step=1, default=10, label="Random Forest n_estimators"),
58
+ gr.inputs.Slider(1, 10, step=1, default=1, label="Random Forest max_features"),
59
+ gr.inputs.Slider(100, 2000, step=100, default=1000, label="Number of Samples"),
60
+ gr.inputs.Slider(1, 10, step=1, default=2, label="Number of Features"),
61
+ gr.inputs.Slider(0, 10, step=1, default=0, label="Number of Redundant Features"),
62
+ gr.inputs.Slider(1, 10, step=1, default=2, label="Number of Informative Features"),
63
+ gr.inputs.Slider(0, 100, step=1, default=1, label="Random State"),
64
+ gr.inputs.Slider(1, 10, step=1, default=1, label="Number of Clusters per Class"),
65
+ ]
66
+
67
+ examples = [
68
+ [
69
+ ["Linear SVM"],
70
+ 0.025,
71
+ 5,
72
+ 10,
73
+ 1,
74
+ 1000,
75
+ 2,
76
+ 0,
77
+ 2,
78
+ 1,
79
+ 1,
80
+ ],
81
+ [
82
+ ["Random Forest"],
83
+ 0.025,
84
+ 5,
85
+ 10,
86
+ 1,
87
+ 1000,
88
+ 2,
89
+ 0,
90
+ 2,
91
+ 1,
92
+ 1,
93
+ ],
94
+ [
95
+ ["Linear SVM", "Random Forest"],
96
+ 0.025,
97
+ 5,
98
+ 10,
99
+ 1,
100
+ 1000,
101
+ 2,
102
+ 0,
103
+ 2,
104
+ 1,
105
+ 1,
106
+ ]
107
+ ]
108
+
109
+ iface = gr.Interface(title = "Detection error tradeoff (DET) curve", fn=plot_roc_det_curves, inputs=parameters, outputs="plot", description="In this example, we compare two binary classification multi-threshold metrics: the Receiver Operating Characteristic (ROC) and the Detection Error Tradeoff (DET). For such purpose, we evaluate two different classifiers for the same classification task. See the original scikit-learn example here: https://scikit-learn.org/stable/auto_examples/model_selection/plot_det.html")
110
+ iface.launch()