Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from peft import PeftModel, PeftConfig
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
from transformers import GenerationConfig
|
5 |
+
|
6 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
7 |
+
|
8 |
+
#Base Model ๋ฐ Lora Model ์ ํ
|
9 |
+
base_model = "beomi/KoAlpaca-Polyglot-5.8B"
|
10 |
+
lora_weights = 'KimSHine/Scenario_Koalpaca_5.8B-lora'
|
11 |
+
load_8bit = True
|
12 |
+
|
13 |
+
# Base Model Tokenizer
|
14 |
+
tokenizer1 = AutoTokenizer.from_pretrained(base_model)
|
15 |
+
## token id ์ถ๊ฐ
|
16 |
+
tokenizer1.pad_token_id = 0
|
17 |
+
tokenizer1.eos_token_id = 2
|
18 |
+
|
19 |
+
"""### Base Model ๋ถ๋ฌ์ค๊ธฐ"""
|
20 |
+
|
21 |
+
# KoAlpaca-polyglot-5.8B
|
22 |
+
|
23 |
+
model1 = AutoModelForCausalLM.from_pretrained(
|
24 |
+
base_model,
|
25 |
+
load_in_8bit=load_8bit,
|
26 |
+
torch_dtype=torch.float16,
|
27 |
+
device_map="auto",
|
28 |
+
)
|
29 |
+
|
30 |
+
model1.config.pad_token_id = 0
|
31 |
+
model1.config.eos_token_id = 2
|
32 |
+
|
33 |
+
"""### LoRA Model ๋ถ๋ฌ์ค๊ธฐ
|
34 |
+
Fine Tuningํ Model
|
35 |
+
"""
|
36 |
+
|
37 |
+
model1 = PeftModel.from_pretrained(
|
38 |
+
model1,
|
39 |
+
lora_weights,
|
40 |
+
torch_dtype=torch.float16,
|
41 |
+
)
|
42 |
+
|
43 |
+
model1.config.pad_token_id = 0 # unk
|
44 |
+
model1.config.bos_token_id = 0
|
45 |
+
model1.config.eos_token_id = 2
|
46 |
+
|
47 |
+
def yeollm_text(instruction, summary):
|
48 |
+
|
49 |
+
prompt = f"""์๋๋ ์์
์ ์ค๋ช
ํ๋ ์ง์๋ฌธ๊ณผ ๋๋ณธ์ ์์ฑํ๋๋ฐ ์ฐธ๊ณ ํ ์ค๊ฑฐ๋ฆฌ์ ์ง์ ์ด๋ฃจ๋ ์์ ์
๋๋ค. ์์ฒญ์ ์ ์ ํ ๋ง์กฑํ๋ ๋๋ณธ์ ์์ฑํ์ธ์.
|
50 |
+
### ์ง์๋ฌธ:
|
51 |
+
{instruction}
|
52 |
+
### ์ค๊ฑฐ๋ฆฌ:
|
53 |
+
{summary}
|
54 |
+
### ๋๋ณธ:
|
55 |
+
"""
|
56 |
+
|
57 |
+
temperature = 0.3
|
58 |
+
top_p = 0.95
|
59 |
+
top_k = 40
|
60 |
+
max_new_tokens = 512 #2048
|
61 |
+
no_repeat_ngram_size = 5 # 3๊ฐ ์ด์์ ํ ํฐ์ด ๋ฐ๋ณต๋ ๊ฒฝ์ฐ ํ๋ฅ ์ 0์ผ๋ก ๋ง๋ฆ
|
62 |
+
## greed search, beam search์ ๊ฒฐ๊ณผ๋ ๋ฐ๋์ง ์์ (๋ฌผ๋ก ์ต์ข
๊ฒฐ๊ณผ๋ ๋ฐ๋, ์ค๊ฐ sample ๋ง๋๋ ๊ฒ์ ๋์ผํ๋ค๋ ๊ฒ)
|
63 |
+
do_sample = True ## True : random, False(default) : Greedy Search
|
64 |
+
num_beams = 5 ## do_sample ์ด false์ผ ๋ ์ฌ๊ธฐ์ ๊ฐ์ด ์์ผ๋ฉด, beam search
|
65 |
+
|
66 |
+
inputs = tokenizer1(prompt, return_tensors="pt")
|
67 |
+
input_ids = inputs["input_ids"].to(DEVICE)
|
68 |
+
|
69 |
+
generation_config = GenerationConfig(
|
70 |
+
do_sample = do_sample,
|
71 |
+
temperature=temperature,
|
72 |
+
top_p=top_p,
|
73 |
+
top_k=top_k,
|
74 |
+
pad_token_id = 0, # pad token ์ถ๊ฐ
|
75 |
+
no_repeat_ngram_size = no_repeat_ngram_size,
|
76 |
+
# num_beams=num_beams,
|
77 |
+
# **kwargs,
|
78 |
+
)
|
79 |
+
|
80 |
+
# Generate text
|
81 |
+
with torch.no_grad():
|
82 |
+
generation_output = model1.generate(
|
83 |
+
input_ids=input_ids,
|
84 |
+
generation_config=generation_config,
|
85 |
+
return_dict_in_generate=True,
|
86 |
+
output_scores=True,
|
87 |
+
max_new_tokens=max_new_tokens,
|
88 |
+
)
|
89 |
+
s = generation_output.sequences[0]
|
90 |
+
output = tokenizer1.decode(s)
|
91 |
+
output = output.split('### ๋๋ณธ:')[1]
|
92 |
+
if output[-13:] == '<|endoftext|>':
|
93 |
+
output = output[:-13]
|
94 |
+
return output.lstrip()
|
95 |
+
|
96 |
+
"""## text davinci 003 ๋ถ๋ฌ์ค๊ธฐ"""
|
97 |
+
|
98 |
+
import openai
|
99 |
+
OPENAI_API_KEY = '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'
|
100 |
+
openai.api_key = OPENAI_API_KEY
|
101 |
+
|
102 |
+
model2 = 'text-davinci-003' #'gpt-3.5-turbo'
|
103 |
+
max_tokens = 2048
|
104 |
+
temperature = 0.3
|
105 |
+
Top_p = 1
|
106 |
+
|
107 |
+
def davinci_text(instruction, summary):
|
108 |
+
prompt = f"""
|
109 |
+
์๋์ ์ค๊ฑฐ๋ฆฌ๋ฅผ ๋ณด๊ณ {instruction}
|
110 |
+
### ์ค๊ฑฐ๋ฆฌ:
|
111 |
+
{summary}
|
112 |
+
### ๋๋ณธ:
|
113 |
+
"""
|
114 |
+
|
115 |
+
response = openai.Completion.create(
|
116 |
+
engine = model2,
|
117 |
+
prompt = prompt,
|
118 |
+
temperature = temperature,
|
119 |
+
max_tokens = max_tokens,
|
120 |
+
n=1,
|
121 |
+
)
|
122 |
+
return response.choices[0].text.strip()
|
123 |
+
|
124 |
+
|
125 |
+
"""## gpt 3.5 turbo ๋ถ๋ฌ์ค๊ธฐ"""
|
126 |
+
|
127 |
+
import openai
|
128 |
+
OPENAI_API_KEY = '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'
|
129 |
+
openai.api_key = OPENAI_API_KEY
|
130 |
+
|
131 |
+
model4 = 'gpt-3.5-turbo' #'gpt-3.5-turbo'
|
132 |
+
max_tokens = 2048
|
133 |
+
temperature = 0.3
|
134 |
+
Top_p = 1
|
135 |
+
|
136 |
+
|
137 |
+
def gpt_text(instruction, summary):
|
138 |
+
prompt = f"""
|
139 |
+
### ์ง์๋ฌธ:
|
140 |
+
{instruction}
|
141 |
+
### ์ค๊ฑฐ๋ฆฌ:
|
142 |
+
{summary}
|
143 |
+
### ๋๋ณธ:
|
144 |
+
"""
|
145 |
+
response = openai.ChatCompletion.create(
|
146 |
+
model = model4,
|
147 |
+
messages=[
|
148 |
+
{"role": "system", "content": "์๋๋ ์์
์ ์ค๋ช
ํ๋ ์ง์๋ฌธ๊ณผ ๋๋ณธ์ ์์ฑํ๋๋ฐ ์ฐธ๊ณ ํ ์ค๊ฑฐ๋ฆฌ์ ์ง์ ์ด๋ฃจ๋ ์์ ์
๋๋ค. ์์ฒญ์ ์ ์ ํ ๋ง์กฑํ๋ ๋๋ณธ์ ์์ฑํ์ธ์."},
|
149 |
+
{"role": "user", "content": prompt},
|
150 |
+
],
|
151 |
+
temperature = temperature,
|
152 |
+
max_tokens = max_tokens,
|
153 |
+
n=1,
|
154 |
+
)
|
155 |
+
for choice in response["choices"]:
|
156 |
+
content = choice["message"]["content"]
|
157 |
+
|
158 |
+
return content
|
159 |
+
|
160 |
+
"""# gradio"""
|
161 |
+
|
162 |
+
import gradio as gr
|
163 |
+
|
164 |
+
generator1 = gr.Interface(
|
165 |
+
fn=yeollm_text,
|
166 |
+
inputs=[
|
167 |
+
gr.inputs.Textbox(label="Instruction"),
|
168 |
+
gr.inputs.Textbox(label="Summary")
|
169 |
+
],
|
170 |
+
outputs=gr.outputs.Textbox(label="Yeollm Scenario"),
|
171 |
+
title="Yeollm Scenario Generation",
|
172 |
+
description="Generate scenarios using the Yeollm model.",
|
173 |
+
theme="huggingface"
|
174 |
+
)
|
175 |
+
|
176 |
+
generator2 = gr.Interface(
|
177 |
+
fn=davinci_text,
|
178 |
+
inputs=[
|
179 |
+
gr.inputs.Textbox(label="Instruction"),
|
180 |
+
gr.inputs.Textbox(label="Summary")
|
181 |
+
],
|
182 |
+
outputs=gr.outputs.Textbox(label="Davinci Scenario"),
|
183 |
+
title="Davinci Generation",
|
184 |
+
description="Generate scenarios using the Davinci model.",
|
185 |
+
theme="huggingface"
|
186 |
+
)
|
187 |
+
|
188 |
+
generator3 = gr.Interface(
|
189 |
+
fn=gpt_text,
|
190 |
+
inputs=[
|
191 |
+
gr.inputs.Textbox(label="Instruction"),
|
192 |
+
gr.inputs.Textbox(label="Summary")
|
193 |
+
],
|
194 |
+
outputs=gr.outputs.Textbox(label="GPT Scenario"),
|
195 |
+
title="GPT Generation",
|
196 |
+
description="Generate scenarios using the GPT model.",
|
197 |
+
theme="huggingface"
|
198 |
+
)
|
199 |
+
|
200 |
+
gr.Parallel(generator1, generator2, generator3).launch(share=True, debug=True)
|