Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import ( | |
BertTokenizer, | |
XLNetTokenizer, | |
GPT2Tokenizer, | |
AutoModelForSequenceClassification | |
) | |
# Model repositories on Hugging Face Hub | |
model_repos = { | |
"BERT": "sk23aib/emotion-bert", | |
"XLNet": "sk23aib/emotion-xlnet", | |
"GPT-2": "sk23aib/emotion-gpt2" | |
} | |
# Emotion labels (must match model training order) | |
emotion_labels = [ | |
"anger", "boredom", "empty", "enthusiasm", "fun", "happiness", "hate", | |
"love", "neutral", "relief", "sadness", "surprise", "worry" | |
] | |
# Load models and tokenizers | |
loaded_models = {} | |
# BERT | |
bert_tokenizer = BertTokenizer.from_pretrained(model_repos["BERT"]) | |
bert_model = AutoModelForSequenceClassification.from_pretrained(model_repos["BERT"]) | |
bert_model.eval() | |
loaded_models["BERT"] = {"tokenizer": bert_tokenizer, "model": bert_model} | |
# XLNet | |
xlnet_tokenizer = XLNetTokenizer.from_pretrained(model_repos["XLNet"]) | |
xlnet_model = AutoModelForSequenceClassification.from_pretrained(model_repos["XLNet"]) | |
xlnet_model.eval() | |
loaded_models["XLNet"] = {"tokenizer": xlnet_tokenizer, "model": xlnet_model} | |
# GPT-2 | |
gpt2_tokenizer = GPT2Tokenizer.from_pretrained(model_repos["GPT-2"], padding_side="left") | |
gpt2_tokenizer.pad_token = gpt2_tokenizer.eos_token # Required for GPT-2 | |
gpt2_model = AutoModelForSequenceClassification.from_pretrained(model_repos["GPT-2"]) | |
gpt2_model.config.pad_token_id = gpt2_tokenizer.pad_token_id | |
gpt2_model.eval() | |
loaded_models["GPT-2"] = {"tokenizer": gpt2_tokenizer, "model": gpt2_model} | |
# Inference function β return top emotion + probability | |
def predict_emotions(text): | |
output_lines = [] | |
with torch.no_grad(): | |
for model_name, components in loaded_models.items(): | |
tokenizer = components["tokenizer"] | |
model = components["model"] | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True) | |
logits = model(**inputs).logits | |
probs = torch.nn.functional.softmax(logits, dim=1)[0] | |
top_idx = torch.argmax(probs).item() | |
top_emotion = emotion_labels[top_idx] | |
top_confidence = round(float(probs[top_idx]), 4) | |
output_lines.append(f"{model_name}: {top_emotion} ({top_confidence})") | |
return "\n".join(output_lines) | |
# Gradio Interface | |
interface = gr.Interface( | |
fn=predict_emotions, | |
inputs=gr.Textbox(lines=3, placeholder="Type a sentence to analyze..."), | |
outputs=gr.Textbox(label="Top Emotion by Model"), | |
title="Multi-Model Emotion Classifier", | |
description="See which emotion is predicted by BERT, XLNet, and GPT-2, along with their confidence." | |
) | |
interface.launch() | |