Sharad Joshi
cleanup and adding examples
65144f7
raw
history blame
789 Bytes
import gradio as gr
from fastai.vision.all import *
import scikit-image
learn = load_learner('model.pkl')
def predict(img):
img = PILImage.create(img)
return round(learn.predict(img)[0][0])
title = "Number of characters in a single line image"
description = "Counts the number of characters including special characters in a text present in image. This is a precursor to building a different kind of OCR(experimental approach) with CNN + RNN."
examples = ["1.png", "2.png", "3.png", "4.png"]
interpretation = 'default'
enable_queue = True
gr.Interface(fn=predict, inputs=gr.inputs.Image(), outputs=gr.outputs.Textbox(label='Predicted Score'),title=title, description=description, examples=examples,interpretation=interpretation, enable_queue=enable_queue, live=True).launch()