sivan22 commited on
Commit
b3f14a4
โ€ข
1 Parent(s): 7e96362

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -0
app.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from streamlit.logger import get_logger
3
+ from transformers import pipeline
4
+ import datasets
5
+ import pandas as pd
6
+ from huggingface_hub import login
7
+
8
+ LOGGER = get_logger(__name__)
9
+ model = "sivan22/halacha-siman-seif-classifier-new"
10
+
11
+
12
+ login('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')
13
+ ds = datasets.load_dataset('sivan22/orach-chaim',token=True)
14
+ df = ds['train'].to_pandas()
15
+ def clean(s)->str:
16
+ return s.replace(" ","")
17
+ df['seif']= df['seif'].apply(clean)
18
+
19
+
20
+
21
+ def get_predicts_local(input)->str:
22
+ classifier = pipeline("text-classification",model=model,top_k=None)
23
+ predicts = classifier(input)
24
+ return predicts
25
+
26
+ def get_predicts_online(input)->str:
27
+ import requests
28
+ API_URL = "https://api-inference.huggingface.co/models/" + model
29
+ headers = {"Authorization": f"Bearer {'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'}"}
30
+ def query(input_text):
31
+ response = requests.post(API_URL, headers=headers, json='{{inputs:' +input_text+'}{wait_for_model:true}}')
32
+ return response.json()
33
+ predicts = query(input)
34
+ return predicts
35
+
36
+ def run():
37
+ st.set_page_config(
38
+ page_title="Halacha classification",
39
+ page_icon="",
40
+ )
41
+
42
+ st.write("# ื—ื™ืคื•ืฉ ื‘ืฉื•ืœื—ืŸ ืขืจื•ืš")
43
+ use_local = st.checkbox("ื—ื™ืคื•ืฉ ืœื ืžืงื•ื•ืŸ")
44
+ user_input = st.text_input('ื›ืชื•ื‘ ื›ืืŸ ืืช ืฉืืœืชืš', placeholder='ื›ืžื” ื ืจื•ืช ืžื“ืœื™ืงื™ื ื‘ื—ื ื•ื›ื”')
45
+ if st.button('ื—ืคืฉ') and user_input!="":
46
+ get_predicts = get_predicts_local if use_local else get_predicts_online
47
+ #print(get_predicts(user_input)[0][0:5])
48
+ for prediction in get_predicts(user_input)[0][:5]:
49
+ rows = df[((df["bookname"] == " ืฉืœื—ืŸ ืขืจื•ืš - ืื•ืจื— ื—ื™ื™ื ") |
50
+ (df["bookname"] ==" ืžืฉื ื” ื‘ืจื•ืจื”")) &
51
+ (df["siman"] == prediction['label'].split(' ')[0])&
52
+ (df["seif"] == prediction['label'].split(' ')[1]) ]
53
+ rows.sort_values(["bookname"],ascending=False, inplace=True)
54
+
55
+ print(prediction['label'].split(' '))
56
+ st.write('ืกื™ืžืŸ ' + str(prediction['label']), rows[['text','sek','seif','siman','bookname']])
57
+
58
+
59
+
60
+ if __name__ == "__main__":
61
+ run()