Spaces:
Sleeping
Sleeping
import numpy as np | |
import pickle | |
import streamlit as st | |
# loading the saved model | |
loaded_model = pickle.load(open('C:/Users/dizda/risk/deploy/rf_class.sav', 'rb')) | |
# creating a function for Prediction | |
def diabetes_prediction(input_data): | |
# changing the input_data to numpy array | |
input_data_as_numpy_array = np.asarray(input_data) | |
# reshape the array as we are predicting for one instance | |
input_data_reshaped = input_data_as_numpy_array.reshape(1,-1) | |
prediction = loaded_model.predict(input_data_reshaped) | |
if prediction[0] == 0: | |
return 'Bad' | |
else: | |
return 'Good' | |
def main(): | |
# giving a title | |
st.title('Risk Credit Prediction Web App') | |
st.title('Enter numeric data only!. Use examples.') | |
# getting the input data from the user | |
Age = st.text_input('Age (example >>> 19-75)') | |
Sex = st.text_input('Sex (example >>> male=1 female=0)') | |
Job = st.text_input('Job (example >>> 2, 1, 3, 0)') | |
Housing = st.text_input('Housing (example >>> own=3, free=2, rent=1)') | |
Saving_accounts = st.text_input('Saving accounts (example >>> moderate=1, little=0, quite rich=3, rich=2)') | |
Checking_account = st.text_input('Checking account (example >>> little=1, moderate=2, rich=3)') | |
Credit_amount = st.text_input('Credit amount (example >>> 100-20 000 (Deutsch Mark))') | |
Duration = st.text_input('Duration (example >>> 4-60 (month))') | |
Purpose = st.text_input('Purpose (example >>> radio/TV = 0, education = 1, furniture/equipment = 2, car = 3, business = 4,domestic_appliances = 5, repairs = 6, vacation/others = 7)') | |
# code for Prediction | |
risk = '' | |
# creating a button for Prediction | |
if st.button('Submit'): | |
risk = diabetes_prediction([Age, Sex, Job, Housing, Saving_accounts, Checking_account, Credit_amount, Duration, Purpose]) | |
st.success(risk) | |
if __name__ == '__main__': | |
main() | |