sitammeur commited on
Commit
463d38a
·
verified ·
1 Parent(s): f8807d4

Upload 12 files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ images/posing-sample-image2.png filter=lfs diff=lfs merge=lfs -text
app.py ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Importing the requirements
2
+ import warnings
3
+ warnings.filterwarnings("ignore")
4
+
5
+ import gradio as gr
6
+ from src.app.predict_pose import predict_pose
7
+
8
+
9
+ # Image and input parameters
10
+ image = gr.Image(type="pil", label="Image")
11
+ confidence_threshold = gr.Slider(
12
+ minimum=0, maximum=1, step=0.01, value=0.25, label="Confidence threshold"
13
+ )
14
+ iou_threshold = gr.Slider(
15
+ minimum=0, maximum=1, step=0.01, value=0.45, label="IoU threshold"
16
+ )
17
+ max_detections = gr.Slider(
18
+ minimum=1, maximum=300, step=1, value=300, label="Max detections"
19
+ )
20
+ model_name = gr.Radio(
21
+ choices=[
22
+ "yolo11n-pose.pt",
23
+ "yolo11s-pose.pt",
24
+ "yolo11m-pose.pt",
25
+ "yolo11l-pose.pt",
26
+ "yolo11x-pose.pt",
27
+ ],
28
+ label="Model name",
29
+ value="yolo11n-pose.pt",
30
+ )
31
+
32
+ # Output image
33
+ pose_image = gr.Image(type="pil", label="Output Image")
34
+
35
+ # Examples for the interface
36
+ examples = [
37
+ ["images/posing-sample-image3.jpg", 0.25, 0.45, 300, "yolo11n-pose.pt"],
38
+ ["images/posing-sample-image4.jpg", 0.25, 0.45, 300, "yolo11s-pose.pt"],
39
+ ["images/posing-sample-image5.jpg", 0.25, 0.45, 300, "yolo11m-pose.pt"],
40
+ ["images/posing-sample-image1.jpg", 0.25, 0.45, 300, "yolo11l-pose.pt"],
41
+ ["images/posing-sample-image2.png", 0.25, 0.45, 300, "yolo11x-pose.pt"],
42
+ ]
43
+
44
+ # Title, description, and article for the interface
45
+ title = "YOLO11 Pose Estimation"
46
+ description = "Gradio Demo for the YOLO11 Pose Estimation model. This model can detect and predict the poses of people in images. To use it, upload your image, select associated parameters, or use the default values, click 'Submit', or click one of the examples to load them. You can read more at the links below."
47
+ article = "<p style='text-align: center'><a href='https://github.com/ultralytics/ultralytics' target='_blank'>Ultralytics GitHub</a> | <a href='https://docs.ultralytics.com/models/yolo11/' target='_blank'>Model Page</a></p>"
48
+
49
+
50
+ # Launch the interface
51
+ interface = gr.Interface(
52
+ fn=predict_pose,
53
+ inputs=[image, confidence_threshold, iou_threshold, max_detections, model_name],
54
+ outputs=pose_image,
55
+ examples=examples,
56
+ cache_examples=True,
57
+ cache_mode="lazy",
58
+ title=title,
59
+ description=description,
60
+ article=article,
61
+ theme="Nymbo/Nymbo_Theme",
62
+ flagging_mode="never",
63
+ )
64
+ interface.launch(debug=False)
images/posing-sample-image1.jpg ADDED
images/posing-sample-image2.png ADDED

Git LFS Details

  • SHA256: fe111f15dd869428852aa55ffc3e3a0a26519a9997f3e86ffbd1694e03260e6f
  • Pointer size: 132 Bytes
  • Size of remote file: 1.6 MB
images/posing-sample-image3.jpg ADDED
images/posing-sample-image4.jpg ADDED
images/posing-sample-image5.jpg ADDED
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ Pillow
2
+ torch==2.4.0
3
+ torchvision>=0.9.0
4
+ ultralytics>=8.3.0
5
+ spaces
6
+ gradio
src/__init__.py ADDED
File without changes
src/app/__init__.py ADDED
File without changes
src/app/predict_pose.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import PIL.Image as Image
3
+ from ultralytics import YOLO
4
+ import gradio as gr
5
+ import spaces
6
+
7
+ # Local imports
8
+ from src.logger import logging
9
+ from src.exception import CustomExceptionHandling
10
+
11
+
12
+ @spaces.GPU
13
+ def predict_pose(
14
+ img: str, conf_threshold: float, iou_threshold: float, model_name: str
15
+ ) -> Image.Image:
16
+ """
17
+ Predicts objects in an image using a YOLOv8 model with adjustable confidence and IOU thresholds.
18
+
19
+ Args:
20
+ - img (str or numpy.ndarray): The input image or path to the image file.
21
+ - conf_threshold (float): The confidence threshold for object detection.
22
+ - iou_threshold (float): The Intersection Over Union (IOU) threshold for non-max suppression.
23
+ - model_name (str): The name or path of the YOLOv8 model to be used for prediction.
24
+
25
+ Returns:
26
+ PIL.Image.Image: The image with predicted objects plotted on it.
27
+ """
28
+ try:
29
+ # Check if image is None
30
+ if img is None:
31
+ gr.Warning("Please provide an image.")
32
+
33
+ # Load the YOLO model
34
+ model = YOLO(model_name)
35
+
36
+ # Predict objects in the image
37
+ results = model.predict(
38
+ source=img,
39
+ conf=conf_threshold,
40
+ iou=iou_threshold,
41
+ show_labels=True,
42
+ show_conf=True,
43
+ imgsz=640,
44
+ half=True,
45
+ device="cuda:0",
46
+ )
47
+
48
+ # Plot the predicted objects on the image
49
+ for r in results:
50
+ im_array = r.plot()
51
+ im = Image.fromarray(im_array[..., ::-1])
52
+
53
+ # Log the successful prediction
54
+ logging.info("Pose estimated successfully.")
55
+
56
+ # Return the image
57
+ return im
58
+
59
+ # Handle exceptions that may occur during the process
60
+ except Exception as e:
61
+ # Custom exception handling
62
+ raise CustomExceptionHandling(e, sys) from e
src/exception.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This module defines a custom exception handling class and a function to get error message with details of the error.
3
+ """
4
+
5
+ # Standard Library
6
+ import sys
7
+
8
+ # Local imports
9
+ from src.logger import logging
10
+
11
+
12
+ # Function Definition to get error message with details of the error (file name and line number) when an error occurs in the program
13
+ def get_error_message(error, error_detail: sys):
14
+ """
15
+ Get error message with details of the error.
16
+
17
+ Args:
18
+ - error (Exception): The error that occurred.
19
+ - error_detail (sys): The details of the error.
20
+
21
+ Returns:
22
+ str: A string containing the error message along with the file name and line number where the error occurred.
23
+ """
24
+ _, _, exc_tb = error_detail.exc_info()
25
+
26
+ # Get error details
27
+ file_name = exc_tb.tb_frame.f_code.co_filename
28
+ return "Error occured in python script name [{0}] line number [{1}] error message[{2}]".format(
29
+ file_name, exc_tb.tb_lineno, str(error)
30
+ )
31
+
32
+
33
+ # Custom Exception Handling Class Definition
34
+ class CustomExceptionHandling(Exception):
35
+ """
36
+ Custom Exception Handling:
37
+ This class defines a custom exception that can be raised when an error occurs in the program.
38
+ It takes an error message and an error detail as input and returns a formatted error message when the exception is raised.
39
+ """
40
+
41
+ # Constructor
42
+ def __init__(self, error_message, error_detail: sys):
43
+ """Initialize the exception"""
44
+ super().__init__(error_message)
45
+
46
+ self.error_message = get_error_message(error_message, error_detail=error_detail)
47
+
48
+ def __str__(self):
49
+ """String representation of the exception"""
50
+ return self.error_message
src/logger.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Importing the required modules
2
+ import os
3
+ import logging
4
+ from datetime import datetime
5
+
6
+ # Creating a log file with the current date and time as the name of the file
7
+ LOG_FILE = f"{datetime.now().strftime('%m_%d_%Y_%H_%M_%S')}.log"
8
+
9
+ # Creating a logs folder if it does not exist
10
+ logs_path = os.path.join(os.getcwd(), "logs", LOG_FILE)
11
+ os.makedirs(logs_path, exist_ok=True)
12
+
13
+ # Setting the log file path and the log level
14
+ LOG_FILE_PATH = os.path.join(logs_path, LOG_FILE)
15
+
16
+ # Configuring the logger
17
+ logging.basicConfig(
18
+ filename=LOG_FILE_PATH,
19
+ format="[ %(asctime)s ] %(lineno)d %(name)s - %(levelname)s - %(message)s",
20
+ level=logging.INFO,
21
+ )