Spaces:
Build error
Build error
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from dataclasses import dataclass | |
from typing import Optional, Tuple | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
from einops import rearrange | |
from diffusers.utils import BaseOutput, is_torch_version | |
from diffusers.utils.torch_utils import randn_tensor | |
from diffusers.models.attention_processor import SpatialNorm | |
from .modeling_block import ( | |
UNetMidBlock2D, | |
CausalUNetMidBlock2D, | |
get_down_block, | |
get_up_block, | |
get_input_layer, | |
get_output_layer, | |
) | |
from .modeling_resnet import ( | |
Downsample2D, | |
Upsample2D, | |
TemporalDownsample2x, | |
TemporalUpsample2x, | |
) | |
from .modeling_causal_conv import CausalConv3d, CausalGroupNorm | |
class DecoderOutput(BaseOutput): | |
r""" | |
Output of decoding method. | |
Args: | |
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): | |
The decoded output sample from the last layer of the model. | |
""" | |
sample: torch.FloatTensor | |
class CausalVaeEncoder(nn.Module): | |
r""" | |
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation. | |
Args: | |
in_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
out_channels (`int`, *optional*, defaults to 3): | |
The number of output channels. | |
down_block_types (`Tuple[str, ...]`, *optional*, defaults to `("DownEncoderBlock2D",)`): | |
The types of down blocks to use. See `~diffusers.models.unet_2d_blocks.get_down_block` for available | |
options. | |
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): | |
The number of output channels for each block. | |
layers_per_block (`int`, *optional*, defaults to 2): | |
The number of layers per block. | |
norm_num_groups (`int`, *optional*, defaults to 32): | |
The number of groups for normalization. | |
act_fn (`str`, *optional*, defaults to `"silu"`): | |
The activation function to use. See `~diffusers.models.activations.get_activation` for available options. | |
double_z (`bool`, *optional*, defaults to `True`): | |
Whether to double the number of output channels for the last block. | |
""" | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
down_block_types: Tuple[str, ...] = ("DownEncoderBlockCausal3D",), | |
spatial_down_sample: Tuple[bool, ...] = (True,), | |
temporal_down_sample: Tuple[bool, ...] = (False,), | |
block_out_channels: Tuple[int, ...] = (64,), | |
layers_per_block: Tuple[int, ...] = (2,), | |
norm_num_groups: int = 32, | |
act_fn: str = "silu", | |
double_z: bool = True, | |
block_dropout: Tuple[int, ...] = (0.0,), | |
mid_block_add_attention=True, | |
): | |
super().__init__() | |
self.layers_per_block = layers_per_block | |
self.conv_in = CausalConv3d( | |
in_channels, | |
block_out_channels[0], | |
kernel_size=3, | |
stride=1, | |
) | |
self.mid_block = None | |
self.down_blocks = nn.ModuleList([]) | |
# down | |
output_channel = block_out_channels[0] | |
for i, down_block_type in enumerate(down_block_types): | |
input_channel = output_channel | |
output_channel = block_out_channels[i] | |
down_block = get_down_block( | |
down_block_type, | |
num_layers=self.layers_per_block[i], | |
in_channels=input_channel, | |
out_channels=output_channel, | |
add_spatial_downsample=spatial_down_sample[i], | |
add_temporal_downsample=temporal_down_sample[i], | |
resnet_eps=1e-6, | |
downsample_padding=0, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
attention_head_dim=output_channel, | |
temb_channels=None, | |
dropout=block_dropout[i], | |
) | |
self.down_blocks.append(down_block) | |
# mid | |
self.mid_block = CausalUNetMidBlock2D( | |
in_channels=block_out_channels[-1], | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
output_scale_factor=1, | |
resnet_time_scale_shift="default", | |
attention_head_dim=block_out_channels[-1], | |
resnet_groups=norm_num_groups, | |
temb_channels=None, | |
add_attention=mid_block_add_attention, | |
dropout=block_dropout[-1], | |
) | |
# out | |
self.conv_norm_out = CausalGroupNorm(num_channels=block_out_channels[-1], num_groups=norm_num_groups, eps=1e-6) | |
self.conv_act = nn.SiLU() | |
conv_out_channels = 2 * out_channels if double_z else out_channels | |
self.conv_out = CausalConv3d(block_out_channels[-1], conv_out_channels, kernel_size=3, stride=1) | |
self.gradient_checkpointing = False | |
def forward(self, sample: torch.FloatTensor, is_init_image=True, temporal_chunk=False) -> torch.FloatTensor: | |
r"""The forward method of the `Encoder` class.""" | |
sample = self.conv_in(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
# down | |
if is_torch_version(">=", "1.11.0"): | |
for down_block in self.down_blocks: | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(down_block), sample, is_init_image, | |
temporal_chunk, use_reentrant=False | |
) | |
# middle | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.mid_block), sample, is_init_image, | |
temporal_chunk, use_reentrant=False | |
) | |
else: | |
for down_block in self.down_blocks: | |
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(down_block), sample, is_init_image, temporal_chunk) | |
# middle | |
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block), sample, is_init_image, temporal_chunk) | |
else: | |
# down | |
for down_block in self.down_blocks: | |
sample = down_block(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
# middle | |
sample = self.mid_block(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
# post-process | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
return sample | |
class CausalVaeDecoder(nn.Module): | |
r""" | |
The `Decoder` layer of a variational autoencoder that decodes its latent representation into an output sample. | |
Args: | |
in_channels (`int`, *optional*, defaults to 3): | |
The number of input channels. | |
out_channels (`int`, *optional*, defaults to 3): | |
The number of output channels. | |
up_block_types (`Tuple[str, ...]`, *optional*, defaults to `("UpDecoderBlock2D",)`): | |
The types of up blocks to use. See `~diffusers.models.unet_2d_blocks.get_up_block` for available options. | |
block_out_channels (`Tuple[int, ...]`, *optional*, defaults to `(64,)`): | |
The number of output channels for each block. | |
layers_per_block (`int`, *optional*, defaults to 2): | |
The number of layers per block. | |
norm_num_groups (`int`, *optional*, defaults to 32): | |
The number of groups for normalization. | |
act_fn (`str`, *optional*, defaults to `"silu"`): | |
The activation function to use. See `~diffusers.models.activations.get_activation` for available options. | |
norm_type (`str`, *optional*, defaults to `"group"`): | |
The normalization type to use. Can be either `"group"` or `"spatial"`. | |
""" | |
def __init__( | |
self, | |
in_channels: int = 3, | |
out_channels: int = 3, | |
up_block_types: Tuple[str, ...] = ("UpDecoderBlockCausal3D",), | |
spatial_up_sample: Tuple[bool, ...] = (True,), | |
temporal_up_sample: Tuple[bool, ...] = (False,), | |
block_out_channels: Tuple[int, ...] = (64,), | |
layers_per_block: Tuple[int, ...] = (2,), | |
norm_num_groups: int = 32, | |
act_fn: str = "silu", | |
mid_block_add_attention=True, | |
interpolate: bool = True, | |
block_dropout: Tuple[int, ...] = (0.0,), | |
): | |
super().__init__() | |
self.layers_per_block = layers_per_block | |
self.conv_in = CausalConv3d( | |
in_channels, | |
block_out_channels[-1], | |
kernel_size=3, | |
stride=1, | |
) | |
self.mid_block = None | |
self.up_blocks = nn.ModuleList([]) | |
# mid | |
self.mid_block = CausalUNetMidBlock2D( | |
in_channels=block_out_channels[-1], | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
output_scale_factor=1, | |
resnet_time_scale_shift="default", | |
attention_head_dim=block_out_channels[-1], | |
resnet_groups=norm_num_groups, | |
temb_channels=None, | |
add_attention=mid_block_add_attention, | |
dropout=block_dropout[-1], | |
) | |
# up | |
reversed_block_out_channels = list(reversed(block_out_channels)) | |
output_channel = reversed_block_out_channels[0] | |
for i, up_block_type in enumerate(up_block_types): | |
prev_output_channel = output_channel | |
output_channel = reversed_block_out_channels[i] | |
is_final_block = i == len(block_out_channels) - 1 | |
up_block = get_up_block( | |
up_block_type, | |
num_layers=self.layers_per_block[i], | |
in_channels=prev_output_channel, | |
out_channels=output_channel, | |
prev_output_channel=None, | |
add_spatial_upsample=spatial_up_sample[i], | |
add_temporal_upsample=temporal_up_sample[i], | |
resnet_eps=1e-6, | |
resnet_act_fn=act_fn, | |
resnet_groups=norm_num_groups, | |
attention_head_dim=output_channel, | |
temb_channels=None, | |
resnet_time_scale_shift='default', | |
interpolate=interpolate, | |
dropout=block_dropout[i], | |
) | |
self.up_blocks.append(up_block) | |
prev_output_channel = output_channel | |
# out | |
self.conv_norm_out = CausalGroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=1e-6) | |
self.conv_act = nn.SiLU() | |
self.conv_out = CausalConv3d(block_out_channels[0], out_channels, kernel_size=3, stride=1) | |
self.gradient_checkpointing = False | |
def forward( | |
self, | |
sample: torch.FloatTensor, | |
is_init_image=True, | |
temporal_chunk=False, | |
) -> torch.FloatTensor: | |
r"""The forward method of the `Decoder` class.""" | |
sample = self.conv_in(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
upscale_dtype = next(iter(self.up_blocks.parameters())).dtype | |
if self.training and self.gradient_checkpointing: | |
def create_custom_forward(module): | |
def custom_forward(*inputs): | |
return module(*inputs) | |
return custom_forward | |
if is_torch_version(">=", "1.11.0"): | |
# middle | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.mid_block), | |
sample, | |
is_init_image=is_init_image, | |
temporal_chunk=temporal_chunk, | |
use_reentrant=False, | |
) | |
sample = sample.to(upscale_dtype) | |
# up | |
for up_block in self.up_blocks: | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(up_block), | |
sample, | |
is_init_image=is_init_image, | |
temporal_chunk=temporal_chunk, | |
use_reentrant=False, | |
) | |
else: | |
# middle | |
sample = torch.utils.checkpoint.checkpoint( | |
create_custom_forward(self.mid_block), sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk, | |
) | |
sample = sample.to(upscale_dtype) | |
# up | |
for up_block in self.up_blocks: | |
sample = torch.utils.checkpoint.checkpoint(create_custom_forward(up_block), sample, | |
is_init_image=is_init_image, temporal_chunk=temporal_chunk,) | |
else: | |
# middle | |
sample = self.mid_block(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
sample = sample.to(upscale_dtype) | |
# up | |
for up_block in self.up_blocks: | |
sample = up_block(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk,) | |
# post-process | |
sample = self.conv_norm_out(sample) | |
sample = self.conv_act(sample) | |
sample = self.conv_out(sample, is_init_image=is_init_image, temporal_chunk=temporal_chunk) | |
return sample | |
class DiagonalGaussianDistribution(object): | |
def __init__(self, parameters: torch.Tensor, deterministic: bool = False): | |
self.parameters = parameters | |
self.mean, self.logvar = torch.chunk(parameters, 2, dim=1) | |
self.logvar = torch.clamp(self.logvar, -30.0, 20.0) | |
self.deterministic = deterministic | |
self.std = torch.exp(0.5 * self.logvar) | |
self.var = torch.exp(self.logvar) | |
if self.deterministic: | |
self.var = self.std = torch.zeros_like( | |
self.mean, device=self.parameters.device, dtype=self.parameters.dtype | |
) | |
def sample(self, generator: Optional[torch.Generator] = None) -> torch.FloatTensor: | |
# make sure sample is on the same device as the parameters and has same dtype | |
sample = randn_tensor( | |
self.mean.shape, | |
generator=generator, | |
device=self.parameters.device, | |
dtype=self.parameters.dtype, | |
) | |
x = self.mean + self.std * sample | |
return x | |
def kl(self, other: "DiagonalGaussianDistribution" = None) -> torch.Tensor: | |
if self.deterministic: | |
return torch.Tensor([0.0]) | |
else: | |
if other is None: | |
return 0.5 * torch.sum( | |
torch.pow(self.mean, 2) + self.var - 1.0 - self.logvar, | |
dim=[2, 3, 4], | |
) | |
else: | |
return 0.5 * torch.sum( | |
torch.pow(self.mean - other.mean, 2) / other.var | |
+ self.var / other.var | |
- 1.0 | |
- self.logvar | |
+ other.logvar, | |
dim=[2, 3, 4], | |
) | |
def nll(self, sample: torch.Tensor, dims: Tuple[int, ...] = [1, 2, 3]) -> torch.Tensor: | |
if self.deterministic: | |
return torch.Tensor([0.0]) | |
logtwopi = np.log(2.0 * np.pi) | |
return 0.5 * torch.sum( | |
logtwopi + self.logvar + torch.pow(sample - self.mean, 2) / self.var, | |
dim=dims, | |
) | |
def mode(self) -> torch.Tensor: | |
return self.mean |