Pyramid-Flow / pyramid_dit /flux_modules /modeling_text_encoder.py
sironagasuyagi's picture
Upload folder using huggingface_hub
910e2ad verified
raw
history blame
4.96 kB
import torch
import torch.nn as nn
import os
from transformers import (
CLIPTextModel,
CLIPTokenizer,
T5EncoderModel,
T5TokenizerFast,
)
from typing import Any, Callable, Dict, List, Optional, Union
class FluxTextEncoderWithMask(nn.Module):
def __init__(self, model_path, torch_dtype):
super().__init__()
# CLIP-G
self.tokenizer = CLIPTokenizer.from_pretrained(os.path.join(model_path, 'tokenizer'), torch_dtype=torch_dtype)
self.tokenizer_max_length = (
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 77
)
self.text_encoder = CLIPTextModel.from_pretrained(os.path.join(model_path, 'text_encoder'), torch_dtype=torch_dtype)
# T5
self.tokenizer_2 = T5TokenizerFast.from_pretrained(os.path.join(model_path, 'tokenizer_2'))
self.text_encoder_2 = T5EncoderModel.from_pretrained(os.path.join(model_path, 'text_encoder_2'), torch_dtype=torch_dtype)
self._freeze()
def _freeze(self):
for param in self.parameters():
param.requires_grad = False
def _get_t5_prompt_embeds(
self,
prompt: Union[str, List[str]] = None,
num_images_per_prompt: int = 1,
max_sequence_length: int = 128,
device: Optional[torch.device] = None,
):
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
text_inputs = self.tokenizer_2(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
return_length=False,
return_overflowing_tokens=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_attention_mask = text_inputs.attention_mask
prompt_attention_mask = prompt_attention_mask.to(device)
prompt_embeds = self.text_encoder_2(text_input_ids.to(device), attention_mask=prompt_attention_mask, output_hidden_states=False)[0]
dtype = self.text_encoder_2.dtype
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
_, seq_len, _ = prompt_embeds.shape
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
prompt_attention_mask = prompt_attention_mask.view(batch_size, -1)
prompt_attention_mask = prompt_attention_mask.repeat(num_images_per_prompt, 1)
return prompt_embeds, prompt_attention_mask
def _get_clip_prompt_embeds(
self,
prompt: Union[str, List[str]],
num_images_per_prompt: int = 1,
device: Optional[torch.device] = None,
):
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=self.tokenizer_max_length,
truncation=True,
return_overflowing_tokens=False,
return_length=False,
return_tensors="pt",
)
text_input_ids = text_inputs.input_ids
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
# Use pooled output of CLIPTextModel
prompt_embeds = prompt_embeds.pooler_output
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
# duplicate text embeddings for each generation per prompt, using mps friendly method
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
return prompt_embeds
def encode_prompt(self,
prompt,
num_images_per_prompt=1,
device=None,
):
prompt = [prompt] if isinstance(prompt, str) else prompt
batch_size = len(prompt)
pooled_prompt_embeds = self._get_clip_prompt_embeds(
prompt=prompt,
device=device,
num_images_per_prompt=num_images_per_prompt,
)
prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds(
prompt=prompt,
num_images_per_prompt=num_images_per_prompt,
device=device,
)
return prompt_embeds, prompt_attention_mask, pooled_prompt_embeds
def forward(self, input_prompts, device):
with torch.no_grad():
prompt_embeds, prompt_attention_mask, pooled_prompt_embeds = self.encode_prompt(input_prompts, 1, device=device)
return prompt_embeds, prompt_attention_mask, pooled_prompt_embeds